一种蓝藻卤化酶的生化研究支持双金属辅助因子的参与。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-05-20 Epub Date: 2025-04-29 DOI:10.1021/acs.biochem.4c00720
Michelle L Wang, Nathaniel R Glasser, Mrutyunjay A Nair, Carsten Krebs, J Martin Bollinger, Emily P Balskus
{"title":"一种蓝藻卤化酶的生化研究支持双金属辅助因子的参与。","authors":"Michelle L Wang, Nathaniel R Glasser, Mrutyunjay A Nair, Carsten Krebs, J Martin Bollinger, Emily P Balskus","doi":"10.1021/acs.biochem.4c00720","DOIUrl":null,"url":null,"abstract":"<p><p>Halogenation is a prominent transformation in natural product biosynthesis, with over 5000 halogenated natural products known to date. Biosynthetic pathways accomplish the synthetic challenge of selective halogenation, especially at unactivated <i>sp</i><sup>3</sup> carbon centers, using halogenase enzymes. The halogenase CylC, discovered as part of the cylindrocyclophane (<i>cyl</i>) biosynthetic pathway, performs a highly selective chlorination reaction on an unactivated <i>sp</i><sup>3</sup> carbon center and is proposed to use a dimetal cofactor. Putative dimetal halogenases are widely distributed across cyanobacterial biosynthetic pathways. However, rigorous <i>in vitro</i> biochemical and structural characterization of these enzymes has been challenging. Here, we report additional bioinformatic analyses of putative dimetal halogenases and the biochemical characterization of a newly identified CylC homologue. Site-directed mutagenesis identifies highly conserved putative metal-binding residues, and Mössbauer spectroscopy provides direct evidence for the presence of a diiron cofactor in these halogenases. These insights suggest mechanistic parallels between diiron and mononuclear nonheme iron halogenases, with the potential to guide further characterization and engineering of this unique subfamily of metalloenzymes.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2173-2180"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101540/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biochemical Studies of a Cyanobacterial Halogenase Support the Involvement of a Dimetal Cofactor.\",\"authors\":\"Michelle L Wang, Nathaniel R Glasser, Mrutyunjay A Nair, Carsten Krebs, J Martin Bollinger, Emily P Balskus\",\"doi\":\"10.1021/acs.biochem.4c00720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Halogenation is a prominent transformation in natural product biosynthesis, with over 5000 halogenated natural products known to date. Biosynthetic pathways accomplish the synthetic challenge of selective halogenation, especially at unactivated <i>sp</i><sup>3</sup> carbon centers, using halogenase enzymes. The halogenase CylC, discovered as part of the cylindrocyclophane (<i>cyl</i>) biosynthetic pathway, performs a highly selective chlorination reaction on an unactivated <i>sp</i><sup>3</sup> carbon center and is proposed to use a dimetal cofactor. Putative dimetal halogenases are widely distributed across cyanobacterial biosynthetic pathways. However, rigorous <i>in vitro</i> biochemical and structural characterization of these enzymes has been challenging. Here, we report additional bioinformatic analyses of putative dimetal halogenases and the biochemical characterization of a newly identified CylC homologue. Site-directed mutagenesis identifies highly conserved putative metal-binding residues, and Mössbauer spectroscopy provides direct evidence for the presence of a diiron cofactor in these halogenases. These insights suggest mechanistic parallels between diiron and mononuclear nonheme iron halogenases, with the potential to guide further characterization and engineering of this unique subfamily of metalloenzymes.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"2173-2180\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101540/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00720\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00720","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

卤化是天然产物生物合成中的一个重要转变,迄今已知有5000多种卤化天然产物。生物合成途径利用卤化酶完成选择性卤化的合成挑战,特别是在未活化的sp3碳中心。卤化酶CylC作为圆柱环烷(cyl)生物合成途径的一部分,在未活化的sp3碳中心上进行高选择性氯化反应,并提出使用双金属辅助因子。假定的二金属卤化酶广泛分布在蓝藻生物合成途径中。然而,严格的体外生化和结构表征这些酶一直具有挑战性。在这里,我们报告了假定的二金属卤化酶的额外生物信息学分析和新鉴定的CylC同源物的生化特性。定点诱变鉴定出高度保守的假定金属结合残基,Mössbauer光谱为这些卤化酶中存在双铁辅助因子提供了直接证据。这些见解表明双铁和单核非血红素铁卤化酶之间的机制相似之处,有可能指导进一步表征和工程这一独特的金属酶亚家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemical Studies of a Cyanobacterial Halogenase Support the Involvement of a Dimetal Cofactor.

Halogenation is a prominent transformation in natural product biosynthesis, with over 5000 halogenated natural products known to date. Biosynthetic pathways accomplish the synthetic challenge of selective halogenation, especially at unactivated sp3 carbon centers, using halogenase enzymes. The halogenase CylC, discovered as part of the cylindrocyclophane (cyl) biosynthetic pathway, performs a highly selective chlorination reaction on an unactivated sp3 carbon center and is proposed to use a dimetal cofactor. Putative dimetal halogenases are widely distributed across cyanobacterial biosynthetic pathways. However, rigorous in vitro biochemical and structural characterization of these enzymes has been challenging. Here, we report additional bioinformatic analyses of putative dimetal halogenases and the biochemical characterization of a newly identified CylC homologue. Site-directed mutagenesis identifies highly conserved putative metal-binding residues, and Mössbauer spectroscopy provides direct evidence for the presence of a diiron cofactor in these halogenases. These insights suggest mechanistic parallels between diiron and mononuclear nonheme iron halogenases, with the potential to guide further characterization and engineering of this unique subfamily of metalloenzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信