GKNnet:一种基于知识增强激活层的关系图卷积网络的微生物结构变异检测方法。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fengyi Guo, Yuanbo Li, Hongyuan Zhao, Xiaogang Liu, Jian Mao, Dongna Ma, Shuangping Liu
{"title":"GKNnet:一种基于知识增强激活层的关系图卷积网络的微生物结构变异检测方法。","authors":"Fengyi Guo, Yuanbo Li, Hongyuan Zhao, Xiaogang Liu, Jian Mao, Dongna Ma, Shuangping Liu","doi":"10.1093/bib/bbaf200","DOIUrl":null,"url":null,"abstract":"<p><p>Structural variants (SVs) in microbial genomes play a critical role in phenotypic changes, environmental adaptation, and species evolution, with deletion variations particularly closely linked to phenotypic traits. Therefore, accurate and comprehensive identification of deletion variations is essential. Although long-read sequencing technology can detect more SVs, its high error rate introduces substantial noise, leading to high false-positive and low recall rates in existing SV detection algorithms. This paper presents an SV detection method based on graph convolutional networks (GCNs). The model first represents node features through a heterogeneous graph, leveraging the GCN to precisely identify variant regions. Additionally, a knowledge-augmented activation layer (KANLayer) with a learnable activation function is introduced to reduce noise around variant regions, thereby improving model precision and reducing false positives. A clustering algorithm then aggregates multiple overlapping regions near the variant center into a single accurate SV interval, further enhancing recall. Validation on both simulated and real datasets demonstrates that our method achieves superior F1 scores compared to benchmark methods (cuteSV, Sniffles, Svim, and Pbsv), highlighting its advantage and robustness in SV detection and offering an innovative solution for microbial genome structural variation research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052243/pdf/","citationCount":"0","resultStr":"{\"title\":\"GKNnet: an relational graph convolutional network-based method with knowledge-augmented activation layer for microbial structural variation detection.\",\"authors\":\"Fengyi Guo, Yuanbo Li, Hongyuan Zhao, Xiaogang Liu, Jian Mao, Dongna Ma, Shuangping Liu\",\"doi\":\"10.1093/bib/bbaf200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural variants (SVs) in microbial genomes play a critical role in phenotypic changes, environmental adaptation, and species evolution, with deletion variations particularly closely linked to phenotypic traits. Therefore, accurate and comprehensive identification of deletion variations is essential. Although long-read sequencing technology can detect more SVs, its high error rate introduces substantial noise, leading to high false-positive and low recall rates in existing SV detection algorithms. This paper presents an SV detection method based on graph convolutional networks (GCNs). The model first represents node features through a heterogeneous graph, leveraging the GCN to precisely identify variant regions. Additionally, a knowledge-augmented activation layer (KANLayer) with a learnable activation function is introduced to reduce noise around variant regions, thereby improving model precision and reducing false positives. A clustering algorithm then aggregates multiple overlapping regions near the variant center into a single accurate SV interval, further enhancing recall. Validation on both simulated and real datasets demonstrates that our method achieves superior F1 scores compared to benchmark methods (cuteSV, Sniffles, Svim, and Pbsv), highlighting its advantage and robustness in SV detection and offering an innovative solution for microbial genome structural variation research.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf200\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf200","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

微生物基因组中的结构变异(SVs)在表型变化、环境适应和物种进化中起着至关重要的作用,其中缺失变异与表型性状密切相关。因此,准确、全面地识别缺失变异是至关重要的。虽然长读测序技术可以检测到更多的SV,但其高错误率引入了大量的噪声,导致现有SV检测算法的假阳性高,召回率低。提出了一种基于图卷积网络(GCNs)的SV检测方法。该模型首先通过异构图表示节点特征,利用GCN精确识别变异区域。此外,引入了具有可学习激活函数的知识增强激活层(KANLayer),以降低变量区域周围的噪声,从而提高模型精度并减少误报。然后,聚类算法将变体中心附近的多个重叠区域聚集成一个准确的SV区间,进一步提高召回率。在模拟和真实数据集上的验证表明,与基准方法(cuteSV, Sniffles, Svim和Pbsv)相比,我们的方法获得了更高的F1分数,突出了其在SV检测中的优势和鲁棒性,为微生物基因组结构变异研究提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GKNnet: an relational graph convolutional network-based method with knowledge-augmented activation layer for microbial structural variation detection.

Structural variants (SVs) in microbial genomes play a critical role in phenotypic changes, environmental adaptation, and species evolution, with deletion variations particularly closely linked to phenotypic traits. Therefore, accurate and comprehensive identification of deletion variations is essential. Although long-read sequencing technology can detect more SVs, its high error rate introduces substantial noise, leading to high false-positive and low recall rates in existing SV detection algorithms. This paper presents an SV detection method based on graph convolutional networks (GCNs). The model first represents node features through a heterogeneous graph, leveraging the GCN to precisely identify variant regions. Additionally, a knowledge-augmented activation layer (KANLayer) with a learnable activation function is introduced to reduce noise around variant regions, thereby improving model precision and reducing false positives. A clustering algorithm then aggregates multiple overlapping regions near the variant center into a single accurate SV interval, further enhancing recall. Validation on both simulated and real datasets demonstrates that our method achieves superior F1 scores compared to benchmark methods (cuteSV, Sniffles, Svim, and Pbsv), highlighting its advantage and robustness in SV detection and offering an innovative solution for microbial genome structural variation research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信