{"title":"CD200R阻断通过释放肿瘤中的NK和CD8+ T细胞增强抗肿瘤免疫。","authors":"Zheng-Feng Zhang, Yu Zhang, Ya-Wen Chen, Guo-Shuai Cao, Xiao-Dong Zheng, Rui Sun, Hui Peng, Zhi-Gang Tian, Hao-Yu Sun","doi":"10.1038/s41401-025-01556-0","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors have revolutionized cancer therapy, but a large proportion of patients do not respond well to current checkpoint immunotherapies. CD200R (also known as OX2R) is a transmembrane glycoprotein of the immunoglobulin superfamily that is mainly expressed on myeloid and lymphoid-derived immunocompetent cells such as myeloid cells, natural killer (NK), and CD8<sup>+</sup> T cells. In this study, we investigated the therapeutic potential and cellular mechanisms of targeting CD200R in tumor immunotherapy. We established 4 subcutaneous tumor mouse models using MC38 (colon cancer), MCA205 (fibrosarcoma), LLC (lung cancer), and EO771 (mammary cancer) cell lines. We found that CD200R was highly expressed on tumor-infiltrating NK and CD8<sup>+</sup> T cells with exhausted phenotypes in the four subcutaneous tumor mouse models. Either genetic ablation or antibody blockade of CD200R retarded tumor growth and prolonged the survival of tumor-bearing mice by preventing or reversing exhaustion of both NK cells and CD8<sup>+</sup> T cells. The combined therapy of CD200R antibody with anti-PD-1/anti-PD-L1 synergistically inhibited tumor growth. By depletion of NK or/and CD8<sup>+</sup> T cells, we demonstrated that both cell types contributed to the anti-tumor efficacy of CD200R blockade in tumor-bearing mice. Further, the blockade of human CD200R significantly enhanced human NK cell function and inhibited human tumor growth in PBMC-reconstituted xenograft mice. Our results demonstrate that CD200R is a potential immune checkpoint molecule that can suppress the tumoricidal activities of NK and CD8<sup>+</sup> T cells, and could thus be exploited as a therapeutic target in the future.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD200R blockade enhances anti-tumor immunity by unleashing NK and CD8<sup>+</sup> T cells in tumor.\",\"authors\":\"Zheng-Feng Zhang, Yu Zhang, Ya-Wen Chen, Guo-Shuai Cao, Xiao-Dong Zheng, Rui Sun, Hui Peng, Zhi-Gang Tian, Hao-Yu Sun\",\"doi\":\"10.1038/s41401-025-01556-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint inhibitors have revolutionized cancer therapy, but a large proportion of patients do not respond well to current checkpoint immunotherapies. CD200R (also known as OX2R) is a transmembrane glycoprotein of the immunoglobulin superfamily that is mainly expressed on myeloid and lymphoid-derived immunocompetent cells such as myeloid cells, natural killer (NK), and CD8<sup>+</sup> T cells. In this study, we investigated the therapeutic potential and cellular mechanisms of targeting CD200R in tumor immunotherapy. We established 4 subcutaneous tumor mouse models using MC38 (colon cancer), MCA205 (fibrosarcoma), LLC (lung cancer), and EO771 (mammary cancer) cell lines. We found that CD200R was highly expressed on tumor-infiltrating NK and CD8<sup>+</sup> T cells with exhausted phenotypes in the four subcutaneous tumor mouse models. Either genetic ablation or antibody blockade of CD200R retarded tumor growth and prolonged the survival of tumor-bearing mice by preventing or reversing exhaustion of both NK cells and CD8<sup>+</sup> T cells. The combined therapy of CD200R antibody with anti-PD-1/anti-PD-L1 synergistically inhibited tumor growth. By depletion of NK or/and CD8<sup>+</sup> T cells, we demonstrated that both cell types contributed to the anti-tumor efficacy of CD200R blockade in tumor-bearing mice. Further, the blockade of human CD200R significantly enhanced human NK cell function and inhibited human tumor growth in PBMC-reconstituted xenograft mice. Our results demonstrate that CD200R is a potential immune checkpoint molecule that can suppress the tumoricidal activities of NK and CD8<sup>+</sup> T cells, and could thus be exploited as a therapeutic target in the future.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01556-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01556-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CD200R blockade enhances anti-tumor immunity by unleashing NK and CD8+ T cells in tumor.
Immune checkpoint inhibitors have revolutionized cancer therapy, but a large proportion of patients do not respond well to current checkpoint immunotherapies. CD200R (also known as OX2R) is a transmembrane glycoprotein of the immunoglobulin superfamily that is mainly expressed on myeloid and lymphoid-derived immunocompetent cells such as myeloid cells, natural killer (NK), and CD8+ T cells. In this study, we investigated the therapeutic potential and cellular mechanisms of targeting CD200R in tumor immunotherapy. We established 4 subcutaneous tumor mouse models using MC38 (colon cancer), MCA205 (fibrosarcoma), LLC (lung cancer), and EO771 (mammary cancer) cell lines. We found that CD200R was highly expressed on tumor-infiltrating NK and CD8+ T cells with exhausted phenotypes in the four subcutaneous tumor mouse models. Either genetic ablation or antibody blockade of CD200R retarded tumor growth and prolonged the survival of tumor-bearing mice by preventing or reversing exhaustion of both NK cells and CD8+ T cells. The combined therapy of CD200R antibody with anti-PD-1/anti-PD-L1 synergistically inhibited tumor growth. By depletion of NK or/and CD8+ T cells, we demonstrated that both cell types contributed to the anti-tumor efficacy of CD200R blockade in tumor-bearing mice. Further, the blockade of human CD200R significantly enhanced human NK cell function and inhibited human tumor growth in PBMC-reconstituted xenograft mice. Our results demonstrate that CD200R is a potential immune checkpoint molecule that can suppress the tumoricidal activities of NK and CD8+ T cells, and could thus be exploited as a therapeutic target in the future.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.