机器学习势揭示了亚纳米约束下多价离子的输运。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-05-22 Epub Date: 2025-05-12 DOI:10.1021/acs.jpcb.5c00778
Zhenyu Zhang, Mu Chen, Lijian Zhan, Jian Ma, Jingjie Sha, Yunfei Chen
{"title":"机器学习势揭示了亚纳米约束下多价离子的输运。","authors":"Zhenyu Zhang, Mu Chen, Lijian Zhan, Jian Ma, Jingjie Sha, Yunfei Chen","doi":"10.1021/acs.jpcb.5c00778","DOIUrl":null,"url":null,"abstract":"<p><p>Multivalent ions play a critical role in energy storage, environmental remediation, catalysis, and biomedical research due to their strong interactions with water and charged molecules. However, accurately modeling the transport behavior of multivalent ions within solid-state or biological nanochannels remains a significant challenge. In this study, we develop a machine learning potential trained on data sets derived from <i>ab initio</i> molecular dynamics simulations, enabling precise simulation of multivalent ion transport in nanochannels with density functional theory (DFT)-level accuracy. The simulated ion diffusion coefficients at varying salt concentrations show excellent agreement with experimental measurements. Leveraging this potential, we uncover how confinement alters La<sup>3+</sup> ion hydration dynamics and the free energy landscapes of ion pairing. In particular, our results reveal that electronic polarization effects reduce the local electric fields generated by ions in nanoconfined multivalent electrolytes, thereby diminishing the tendency for ion association. This work provides a powerful tool for the design of nanofluidic systems in biomimetic applications and energy storage that leverage multivalent electrolytes.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"4996-5004"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport of Multivalent Ions under Subnanometer Confinement Revealed by a Machine Learning Potential.\",\"authors\":\"Zhenyu Zhang, Mu Chen, Lijian Zhan, Jian Ma, Jingjie Sha, Yunfei Chen\",\"doi\":\"10.1021/acs.jpcb.5c00778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivalent ions play a critical role in energy storage, environmental remediation, catalysis, and biomedical research due to their strong interactions with water and charged molecules. However, accurately modeling the transport behavior of multivalent ions within solid-state or biological nanochannels remains a significant challenge. In this study, we develop a machine learning potential trained on data sets derived from <i>ab initio</i> molecular dynamics simulations, enabling precise simulation of multivalent ion transport in nanochannels with density functional theory (DFT)-level accuracy. The simulated ion diffusion coefficients at varying salt concentrations show excellent agreement with experimental measurements. Leveraging this potential, we uncover how confinement alters La<sup>3+</sup> ion hydration dynamics and the free energy landscapes of ion pairing. In particular, our results reveal that electronic polarization effects reduce the local electric fields generated by ions in nanoconfined multivalent electrolytes, thereby diminishing the tendency for ion association. This work provides a powerful tool for the design of nanofluidic systems in biomimetic applications and energy storage that leverage multivalent electrolytes.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"4996-5004\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c00778\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00778","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多价离子由于与水和带电分子的强相互作用,在能量储存、环境修复、催化和生物医学研究中发挥着重要作用。然而,准确地模拟固态或生物纳米通道内多价离子的传输行为仍然是一个重大挑战。在本研究中,我们开发了一种机器学习潜力,该潜力基于从头算分子动力学模拟数据集进行训练,能够以密度泛函理论(DFT)级别的精度精确模拟纳米通道中的多价离子传输。模拟的不同盐浓度下的离子扩散系数与实验测量结果吻合良好。利用这一潜力,我们揭示了约束如何改变La3+离子水合动力学和离子配对的自由能景观。特别是,我们的研究结果表明,电子极化效应减少了纳米多价电解质中离子产生的局部电场,从而减少了离子结合的趋势。这项工作为仿生应用和利用多价电解质的能量存储的纳米流体系统的设计提供了有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transport of Multivalent Ions under Subnanometer Confinement Revealed by a Machine Learning Potential.

Multivalent ions play a critical role in energy storage, environmental remediation, catalysis, and biomedical research due to their strong interactions with water and charged molecules. However, accurately modeling the transport behavior of multivalent ions within solid-state or biological nanochannels remains a significant challenge. In this study, we develop a machine learning potential trained on data sets derived from ab initio molecular dynamics simulations, enabling precise simulation of multivalent ion transport in nanochannels with density functional theory (DFT)-level accuracy. The simulated ion diffusion coefficients at varying salt concentrations show excellent agreement with experimental measurements. Leveraging this potential, we uncover how confinement alters La3+ ion hydration dynamics and the free energy landscapes of ion pairing. In particular, our results reveal that electronic polarization effects reduce the local electric fields generated by ions in nanoconfined multivalent electrolytes, thereby diminishing the tendency for ion association. This work provides a powerful tool for the design of nanofluidic systems in biomimetic applications and energy storage that leverage multivalent electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信