Nikolaos Angelos Stamos, Benjamin Ries, Regina Schneider, Pavleta Tzvetkova, Florian Montel, Christian Jandl, Ulrike Werthmann
{"title":"超越障碍,大的结晶障碍:通过计算和核磁共振研究探索的五种化合物的超越规则中的消旋异构。","authors":"Nikolaos Angelos Stamos, Benjamin Ries, Regina Schneider, Pavleta Tzvetkova, Florian Montel, Christian Jandl, Ulrike Werthmann","doi":"10.1021/acs.molpharmaceut.5c00204","DOIUrl":null,"url":null,"abstract":"<p><p>Stereochemical purity, stability, and selection of a suitable solid-state form are pivotal factors in pharmaceutical development, particularly for complex beyond Rule of 5 (bRo5) compounds. In this study, we explore the intricate interplay between atropisomerism and crystallization using two model bRo5 compounds, namely, ACBI1 and BI201335, both violating three of four Lipinski's rules. One of the tool compounds exhibits Class 2 atropisomeric behavior, and the other is devoid of it. A diverse array of crystallization methods, including solution-phase crystallization, cocrystallization, and salt formation, were applied, revealing the critical role of atropisomerism-induced stereochemistry in polymorphism and nucleation outcomes. <i>In silico</i> torsion profile calculations and NMR studies were employed to elucidate the rotational energy barriers and confirm the presence or absence of atropisomerism. This comprehensive analysis highlights the significance of understanding stereochemical phenomena such as atropisomerism in designing and developing bRo5 compounds. By integrating advanced analytical techniques and crystallization strategies, this work provides novel insights into tailoring pharmaceutical properties for next-generation therapeutics.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"3268-3285"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond Barriers, Big Crystallization Hurdles: Atropisomerism in Beyond Rule of Five Compounds Explored by Computational and NMR Studies.\",\"authors\":\"Nikolaos Angelos Stamos, Benjamin Ries, Regina Schneider, Pavleta Tzvetkova, Florian Montel, Christian Jandl, Ulrike Werthmann\",\"doi\":\"10.1021/acs.molpharmaceut.5c00204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stereochemical purity, stability, and selection of a suitable solid-state form are pivotal factors in pharmaceutical development, particularly for complex beyond Rule of 5 (bRo5) compounds. In this study, we explore the intricate interplay between atropisomerism and crystallization using two model bRo5 compounds, namely, ACBI1 and BI201335, both violating three of four Lipinski's rules. One of the tool compounds exhibits Class 2 atropisomeric behavior, and the other is devoid of it. A diverse array of crystallization methods, including solution-phase crystallization, cocrystallization, and salt formation, were applied, revealing the critical role of atropisomerism-induced stereochemistry in polymorphism and nucleation outcomes. <i>In silico</i> torsion profile calculations and NMR studies were employed to elucidate the rotational energy barriers and confirm the presence or absence of atropisomerism. This comprehensive analysis highlights the significance of understanding stereochemical phenomena such as atropisomerism in designing and developing bRo5 compounds. By integrating advanced analytical techniques and crystallization strategies, this work provides novel insights into tailoring pharmaceutical properties for next-generation therapeutics.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"3268-3285\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.5c00204\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00204","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Beyond Barriers, Big Crystallization Hurdles: Atropisomerism in Beyond Rule of Five Compounds Explored by Computational and NMR Studies.
Stereochemical purity, stability, and selection of a suitable solid-state form are pivotal factors in pharmaceutical development, particularly for complex beyond Rule of 5 (bRo5) compounds. In this study, we explore the intricate interplay between atropisomerism and crystallization using two model bRo5 compounds, namely, ACBI1 and BI201335, both violating three of four Lipinski's rules. One of the tool compounds exhibits Class 2 atropisomeric behavior, and the other is devoid of it. A diverse array of crystallization methods, including solution-phase crystallization, cocrystallization, and salt formation, were applied, revealing the critical role of atropisomerism-induced stereochemistry in polymorphism and nucleation outcomes. In silico torsion profile calculations and NMR studies were employed to elucidate the rotational energy barriers and confirm the presence or absence of atropisomerism. This comprehensive analysis highlights the significance of understanding stereochemical phenomena such as atropisomerism in designing and developing bRo5 compounds. By integrating advanced analytical techniques and crystallization strategies, this work provides novel insights into tailoring pharmaceutical properties for next-generation therapeutics.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.