咪唑基ALK5抑制剂减弱TGF-β/ smad介导的肝星状细胞活化和肝纤维化。

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Chemical Research in Toxicology Pub Date : 2025-05-19 Epub Date: 2025-04-11 DOI:10.1021/acs.chemrestox.5c00036
Si-Qi Wang, Yu-Qing Meng, Yan-Ling Wu, Ji-Xing Nan, Cheng-Hua Jin, Li-Hua Lian
{"title":"咪唑基ALK5抑制剂减弱TGF-β/ smad介导的肝星状细胞活化和肝纤维化。","authors":"Si-Qi Wang, Yu-Qing Meng, Yan-Ling Wu, Ji-Xing Nan, Cheng-Hua Jin, Li-Hua Lian","doi":"10.1021/acs.chemrestox.5c00036","DOIUrl":null,"url":null,"abstract":"<p><p>Liver fibrosis resulting from severe liver damage is a major clinical problem for which effective pharmacological drugs and treatment strategies are lacking. TGF-β, a hallmark of liver fibrosis, has been shown to promote ALK5 phosphorylation in an activated state. Hence, the suppression of ALK5 signal transduction has emerged as a promising therapeutic strategy for the treatment of liver fibrosis. In this study, the imidazole derivative J-1149, which exhibited inhibitory activity against ALK5, was synthesized to exert antifibrotic effects, and the inhibition mechanisms were uncovered. Our findings suggested that J-1149 significantly attenuated HSC activation and liver fibrogenesis by acting on the TGF-β/Smad signaling pathway. Concurrently, the potential of J-1149 to impede the P2X7R/NLRP3 axis, curtail the infiltration of macrophages and neutrophils, and reduce liver fibrogenesis was also highlighted. These results demonstrated that J-1149 is a promising candidate for the treatment of liver fibrosis.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"930-941"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imidazole-Based ALK5 Inhibitor Attenuates TGF-β/Smad-Mediated Hepatic Stellate Cell Activation and Hepatic Fibrogenesis.\",\"authors\":\"Si-Qi Wang, Yu-Qing Meng, Yan-Ling Wu, Ji-Xing Nan, Cheng-Hua Jin, Li-Hua Lian\",\"doi\":\"10.1021/acs.chemrestox.5c00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver fibrosis resulting from severe liver damage is a major clinical problem for which effective pharmacological drugs and treatment strategies are lacking. TGF-β, a hallmark of liver fibrosis, has been shown to promote ALK5 phosphorylation in an activated state. Hence, the suppression of ALK5 signal transduction has emerged as a promising therapeutic strategy for the treatment of liver fibrosis. In this study, the imidazole derivative J-1149, which exhibited inhibitory activity against ALK5, was synthesized to exert antifibrotic effects, and the inhibition mechanisms were uncovered. Our findings suggested that J-1149 significantly attenuated HSC activation and liver fibrogenesis by acting on the TGF-β/Smad signaling pathway. Concurrently, the potential of J-1149 to impede the P2X7R/NLRP3 axis, curtail the infiltration of macrophages and neutrophils, and reduce liver fibrogenesis was also highlighted. These results demonstrated that J-1149 is a promising candidate for the treatment of liver fibrosis.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"930-941\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.5c00036\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.5c00036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

严重肝损伤引起的肝纤维化是一个主要的临床问题,缺乏有效的药物和治疗策略。TGF-β是肝纤维化的标志,已被证明在激活状态下促进ALK5磷酸化。因此,抑制ALK5信号转导已成为治疗肝纤维化的一种有前景的治疗策略。本研究合成了对ALK5具有抑制活性的咪唑衍生物J-1149发挥抗纤维化作用,并揭示了其抑制机制。我们的研究结果表明,J-1149通过作用于TGF-β/Smad信号通路显著减弱HSC活化和肝纤维化。同时,J-1149抑制P2X7R/NLRP3轴,抑制巨噬细胞和中性粒细胞的浸润,减少肝纤维化的潜力也被强调。这些结果表明,J-1149是治疗肝纤维化的有希望的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imidazole-Based ALK5 Inhibitor Attenuates TGF-β/Smad-Mediated Hepatic Stellate Cell Activation and Hepatic Fibrogenesis.

Liver fibrosis resulting from severe liver damage is a major clinical problem for which effective pharmacological drugs and treatment strategies are lacking. TGF-β, a hallmark of liver fibrosis, has been shown to promote ALK5 phosphorylation in an activated state. Hence, the suppression of ALK5 signal transduction has emerged as a promising therapeutic strategy for the treatment of liver fibrosis. In this study, the imidazole derivative J-1149, which exhibited inhibitory activity against ALK5, was synthesized to exert antifibrotic effects, and the inhibition mechanisms were uncovered. Our findings suggested that J-1149 significantly attenuated HSC activation and liver fibrogenesis by acting on the TGF-β/Smad signaling pathway. Concurrently, the potential of J-1149 to impede the P2X7R/NLRP3 axis, curtail the infiltration of macrophages and neutrophils, and reduce liver fibrogenesis was also highlighted. These results demonstrated that J-1149 is a promising candidate for the treatment of liver fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信