微流控氧梯度分析揭示糖尿病条件下HaCaT细胞迁移的代谢变化。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Mohamad Orabi, Kai Duan, Mengyang Zhou, Joe Fujiou Lo
{"title":"微流控氧梯度分析揭示糖尿病条件下HaCaT细胞迁移的代谢变化。","authors":"Mohamad Orabi, Kai Duan, Mengyang Zhou, Joe Fujiou Lo","doi":"10.1093/intbio/zyaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Migration and scratch assays are helpful tools to investigate wound healing and tissue regeneration processes, especially under disease conditions such as diabetes. However, traditional migration (injury-free) assays and scratch (with injury) assays are limited in their control over cellular environments and provide only simplified read-outs of their results. On the other hand, microfluidic-based cell assays offer a distinct advantage in their integration and scalability for multiple modalities and concentrations in a single device. Additionally, in situ stimulation and detection helps to avoid variabilities between individual bioassays. To realize an enhanced, smarter migration assay, we leveraged our multilayered oxygen gradient (1%-16%) to study HaCaT migrations in diabetic conditions with spatial and metabolic read-outs. An analysis of spatial migration over time revealed a new dynamic between hypoxia (at 4.2%-9.1% O2) and hyperglycemia. Furthermore, in situ adenosine triphosphate (ATP) and reactive oxygen species (ROS) responses suggest that this dynamic represents a switch between stationary versus motile modes of metabolism. Thus, low glucose and hypoxia have synergistic effects promoting the migration of cells. These findings illustrate the benefits of spatial microfluidics for modeling complex diseases such as hypoxia and diabetes, where multimodal measurements provide a more deterministic view of the underlying processes.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"17 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic oxygen gradient assay unveils metabolic shifts in HaCaT cell migration under diabetic conditions.\",\"authors\":\"Mohamad Orabi, Kai Duan, Mengyang Zhou, Joe Fujiou Lo\",\"doi\":\"10.1093/intbio/zyaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Migration and scratch assays are helpful tools to investigate wound healing and tissue regeneration processes, especially under disease conditions such as diabetes. However, traditional migration (injury-free) assays and scratch (with injury) assays are limited in their control over cellular environments and provide only simplified read-outs of their results. On the other hand, microfluidic-based cell assays offer a distinct advantage in their integration and scalability for multiple modalities and concentrations in a single device. Additionally, in situ stimulation and detection helps to avoid variabilities between individual bioassays. To realize an enhanced, smarter migration assay, we leveraged our multilayered oxygen gradient (1%-16%) to study HaCaT migrations in diabetic conditions with spatial and metabolic read-outs. An analysis of spatial migration over time revealed a new dynamic between hypoxia (at 4.2%-9.1% O2) and hyperglycemia. Furthermore, in situ adenosine triphosphate (ATP) and reactive oxygen species (ROS) responses suggest that this dynamic represents a switch between stationary versus motile modes of metabolism. Thus, low glucose and hypoxia have synergistic effects promoting the migration of cells. These findings illustrate the benefits of spatial microfluidics for modeling complex diseases such as hypoxia and diabetes, where multimodal measurements provide a more deterministic view of the underlying processes.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"17 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyaf006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyaf006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迁移和划痕分析是研究伤口愈合和组织再生过程的有用工具,特别是在糖尿病等疾病条件下。然而,传统的迁移(无损伤)分析和划痕(有损伤)分析在控制细胞环境方面受到限制,并且只能提供简化的结果读出。另一方面,基于微流体的细胞检测在其集成和可扩展性方面具有明显的优势,可以在单个设备中实现多种模式和浓度。此外,原位刺激和检测有助于避免个体生物测定之间的差异。为了实现一种增强的、更智能的迁移分析,我们利用多层氧梯度(1%-16%)来研究糖尿病患者HaCaT的空间和代谢迁移。随着时间的推移,空间迁移分析揭示了缺氧(4.2%-9.1% O2)和高血糖之间的新动态。此外,原位三磷酸腺苷(ATP)和活性氧(ROS)反应表明,这种动态代表了静止与运动代谢模式之间的切换。因此,低糖和缺氧具有促进细胞迁移的协同作用。这些发现说明了空间微流体对模拟复杂疾病(如缺氧和糖尿病)的好处,在这些疾病中,多模态测量为潜在过程提供了更确定的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microfluidic oxygen gradient assay unveils metabolic shifts in HaCaT cell migration under diabetic conditions.

Migration and scratch assays are helpful tools to investigate wound healing and tissue regeneration processes, especially under disease conditions such as diabetes. However, traditional migration (injury-free) assays and scratch (with injury) assays are limited in their control over cellular environments and provide only simplified read-outs of their results. On the other hand, microfluidic-based cell assays offer a distinct advantage in their integration and scalability for multiple modalities and concentrations in a single device. Additionally, in situ stimulation and detection helps to avoid variabilities between individual bioassays. To realize an enhanced, smarter migration assay, we leveraged our multilayered oxygen gradient (1%-16%) to study HaCaT migrations in diabetic conditions with spatial and metabolic read-outs. An analysis of spatial migration over time revealed a new dynamic between hypoxia (at 4.2%-9.1% O2) and hyperglycemia. Furthermore, in situ adenosine triphosphate (ATP) and reactive oxygen species (ROS) responses suggest that this dynamic represents a switch between stationary versus motile modes of metabolism. Thus, low glucose and hypoxia have synergistic effects promoting the migration of cells. These findings illustrate the benefits of spatial microfluidics for modeling complex diseases such as hypoxia and diabetes, where multimodal measurements provide a more deterministic view of the underlying processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信