Mohamad Orabi, Kai Duan, Mengyang Zhou, Joe Fujiou Lo
{"title":"微流控氧梯度分析揭示糖尿病条件下HaCaT细胞迁移的代谢变化。","authors":"Mohamad Orabi, Kai Duan, Mengyang Zhou, Joe Fujiou Lo","doi":"10.1093/intbio/zyaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Migration and scratch assays are helpful tools to investigate wound healing and tissue regeneration processes, especially under disease conditions such as diabetes. However, traditional migration (injury-free) assays and scratch (with injury) assays are limited in their control over cellular environments and provide only simplified read-outs of their results. On the other hand, microfluidic-based cell assays offer a distinct advantage in their integration and scalability for multiple modalities and concentrations in a single device. Additionally, in situ stimulation and detection helps to avoid variabilities between individual bioassays. To realize an enhanced, smarter migration assay, we leveraged our multilayered oxygen gradient (1%-16%) to study HaCaT migrations in diabetic conditions with spatial and metabolic read-outs. An analysis of spatial migration over time revealed a new dynamic between hypoxia (at 4.2%-9.1% O2) and hyperglycemia. Furthermore, in situ adenosine triphosphate (ATP) and reactive oxygen species (ROS) responses suggest that this dynamic represents a switch between stationary versus motile modes of metabolism. Thus, low glucose and hypoxia have synergistic effects promoting the migration of cells. These findings illustrate the benefits of spatial microfluidics for modeling complex diseases such as hypoxia and diabetes, where multimodal measurements provide a more deterministic view of the underlying processes.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"17 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic oxygen gradient assay unveils metabolic shifts in HaCaT cell migration under diabetic conditions.\",\"authors\":\"Mohamad Orabi, Kai Duan, Mengyang Zhou, Joe Fujiou Lo\",\"doi\":\"10.1093/intbio/zyaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Migration and scratch assays are helpful tools to investigate wound healing and tissue regeneration processes, especially under disease conditions such as diabetes. However, traditional migration (injury-free) assays and scratch (with injury) assays are limited in their control over cellular environments and provide only simplified read-outs of their results. On the other hand, microfluidic-based cell assays offer a distinct advantage in their integration and scalability for multiple modalities and concentrations in a single device. Additionally, in situ stimulation and detection helps to avoid variabilities between individual bioassays. To realize an enhanced, smarter migration assay, we leveraged our multilayered oxygen gradient (1%-16%) to study HaCaT migrations in diabetic conditions with spatial and metabolic read-outs. An analysis of spatial migration over time revealed a new dynamic between hypoxia (at 4.2%-9.1% O2) and hyperglycemia. Furthermore, in situ adenosine triphosphate (ATP) and reactive oxygen species (ROS) responses suggest that this dynamic represents a switch between stationary versus motile modes of metabolism. Thus, low glucose and hypoxia have synergistic effects promoting the migration of cells. These findings illustrate the benefits of spatial microfluidics for modeling complex diseases such as hypoxia and diabetes, where multimodal measurements provide a more deterministic view of the underlying processes.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"17 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyaf006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyaf006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Microfluidic oxygen gradient assay unveils metabolic shifts in HaCaT cell migration under diabetic conditions.
Migration and scratch assays are helpful tools to investigate wound healing and tissue regeneration processes, especially under disease conditions such as diabetes. However, traditional migration (injury-free) assays and scratch (with injury) assays are limited in their control over cellular environments and provide only simplified read-outs of their results. On the other hand, microfluidic-based cell assays offer a distinct advantage in their integration and scalability for multiple modalities and concentrations in a single device. Additionally, in situ stimulation and detection helps to avoid variabilities between individual bioassays. To realize an enhanced, smarter migration assay, we leveraged our multilayered oxygen gradient (1%-16%) to study HaCaT migrations in diabetic conditions with spatial and metabolic read-outs. An analysis of spatial migration over time revealed a new dynamic between hypoxia (at 4.2%-9.1% O2) and hyperglycemia. Furthermore, in situ adenosine triphosphate (ATP) and reactive oxygen species (ROS) responses suggest that this dynamic represents a switch between stationary versus motile modes of metabolism. Thus, low glucose and hypoxia have synergistic effects promoting the migration of cells. These findings illustrate the benefits of spatial microfluidics for modeling complex diseases such as hypoxia and diabetes, where multimodal measurements provide a more deterministic view of the underlying processes.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.