高阶几何项对膜的不对称性和动力学的影响。

IF 3.1 3区 化学 Q2 Chemistry
Jan Magnus Sischka, Ingo Nitschke and Axel Voigt
{"title":"高阶几何项对膜的不对称性和动力学的影响。","authors":"Jan Magnus Sischka, Ingo Nitschke and Axel Voigt","doi":"10.1039/D4FD00202D","DOIUrl":null,"url":null,"abstract":"<p >We consider membranes as fluid deformable surfaces and allow for higher order geometric terms in the bending energy related to the Gaussian curvature squared and the mean curvature minus the spontaneous curvature to the fourth power. The evolution equations are derived and numerically solved using surface finite elements. The two higher order geometric terms have different effects. While the Gaussian curvature squared term has a tendency to stabilize tubes and enhance the evolution towards equilibrium shapes, thereby facilitating rapid shape changes, the mean curvature minus the spontaneous curvature to the fourth power destabilizes tubes and leads to qualitatively different equilibrium shapes but also enhances the evolution. This is demonstrated in axisymmetric settings and fully three-dimensional simulations. We therefore postulate that not only surface viscosity but also higher order geometric terms in the bending energy contribute to rapid shape changes which are relevant for morphological changes of cells.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"259 ","pages":" 454-474"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00202d?page=search","citationCount":"0","resultStr":"{\"title\":\"The influence of higher order geometric terms on the asymmetry and dynamics of membranes†\",\"authors\":\"Jan Magnus Sischka, Ingo Nitschke and Axel Voigt\",\"doi\":\"10.1039/D4FD00202D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We consider membranes as fluid deformable surfaces and allow for higher order geometric terms in the bending energy related to the Gaussian curvature squared and the mean curvature minus the spontaneous curvature to the fourth power. The evolution equations are derived and numerically solved using surface finite elements. The two higher order geometric terms have different effects. While the Gaussian curvature squared term has a tendency to stabilize tubes and enhance the evolution towards equilibrium shapes, thereby facilitating rapid shape changes, the mean curvature minus the spontaneous curvature to the fourth power destabilizes tubes and leads to qualitatively different equilibrium shapes but also enhances the evolution. This is demonstrated in axisymmetric settings and fully three-dimensional simulations. We therefore postulate that not only surface viscosity but also higher order geometric terms in the bending energy contribute to rapid shape changes which are relevant for morphological changes of cells.</p>\",\"PeriodicalId\":49075,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"259 \",\"pages\":\" 454-474\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00202d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/fd/d4fd00202d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fd/d4fd00202d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

我们将膜视为流体可变形表面,并允许与高斯曲率平方和平均曲率减去自发曲率的四次方相关的弯曲能量中的高阶几何项。推导了演化方程,并采用曲面有限元法对其进行了数值求解。这两个高阶几何项有不同的作用。虽然高斯曲率平方项具有稳定管材并促进向平衡形状演化的趋势,从而促进形状的快速变化,但平均曲率减去自发曲率的四次方会使管材不稳定,导致平衡形状的性质不同,但也会促进演化。这在轴对称设置和全三维模拟中得到了证明。因此,我们假设不仅表面粘度,而且弯曲能量中的高阶几何项也有助于快速形状变化,这与细胞的形态变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The influence of higher order geometric terms on the asymmetry and dynamics of membranes†

The influence of higher order geometric terms on the asymmetry and dynamics of membranes†

We consider membranes as fluid deformable surfaces and allow for higher order geometric terms in the bending energy related to the Gaussian curvature squared and the mean curvature minus the spontaneous curvature to the fourth power. The evolution equations are derived and numerically solved using surface finite elements. The two higher order geometric terms have different effects. While the Gaussian curvature squared term has a tendency to stabilize tubes and enhance the evolution towards equilibrium shapes, thereby facilitating rapid shape changes, the mean curvature minus the spontaneous curvature to the fourth power destabilizes tubes and leads to qualitatively different equilibrium shapes but also enhances the evolution. This is demonstrated in axisymmetric settings and fully three-dimensional simulations. We therefore postulate that not only surface viscosity but also higher order geometric terms in the bending energy contribute to rapid shape changes which are relevant for morphological changes of cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions CHEMISTRY, PHYSICAL-
CiteScore
4.90
自引率
0.00%
发文量
259
审稿时长
2.8 months
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信