{"title":"牛奶蛋白包被微针:免疫原性、稳定性和安全性评估。","authors":"Ghanesh Kesav Venkatesa Prabhu, Akhilesh Kumar Shakya, Harvinder Singh Gill","doi":"10.1021/acs.molpharmaceut.4c01136","DOIUrl":null,"url":null,"abstract":"<p><p>Cow's milk allergy (CMA) is one of the most frequently occurring food allergies in children, especially in infants less than 3 years old. Mindful avoidance of CMA-triggering foods and prompt epinephrine injection to overcome anaphylaxis in the case of accidental ingestion are the only options currently available to allergic subjects. This study investigates the potential of coated microneedles for delivering CMA into the skin as a novel approach to allergen immunotherapy. Precise amounts of cow's milk proteins (CMP) were dip-coated onto stainless steel microneedle patches and reproducibly delivered to mice epidermis and dermis. Microneedle delivery did not cause bleeding or visible erythema and did not induce skin alarmins, thymic stromal lymphopoietin (TSLP), and IL-33. Dose-dependent elevations in cow's milk allergen-specific IgG, IgG1, and IgG2a levels were observed in Balb/c mice after three weekly microneedle immunizations. Microneedle immunizations proved to be as effective as subcutaneous immunizations without elevating undesired allergen-specific IgE. Moreover, microneedles could be stored at room temperature for at least three months without deterioration in coating integrity. Overall, these results suggest that coated microneedles are viable candidates for treating CMA, warranting further investigation.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2858-2867"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microneedles Coated with Cow's Milk Proteins: Immunogenicity, Stability, and Safety Assessment.\",\"authors\":\"Ghanesh Kesav Venkatesa Prabhu, Akhilesh Kumar Shakya, Harvinder Singh Gill\",\"doi\":\"10.1021/acs.molpharmaceut.4c01136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cow's milk allergy (CMA) is one of the most frequently occurring food allergies in children, especially in infants less than 3 years old. Mindful avoidance of CMA-triggering foods and prompt epinephrine injection to overcome anaphylaxis in the case of accidental ingestion are the only options currently available to allergic subjects. This study investigates the potential of coated microneedles for delivering CMA into the skin as a novel approach to allergen immunotherapy. Precise amounts of cow's milk proteins (CMP) were dip-coated onto stainless steel microneedle patches and reproducibly delivered to mice epidermis and dermis. Microneedle delivery did not cause bleeding or visible erythema and did not induce skin alarmins, thymic stromal lymphopoietin (TSLP), and IL-33. Dose-dependent elevations in cow's milk allergen-specific IgG, IgG1, and IgG2a levels were observed in Balb/c mice after three weekly microneedle immunizations. Microneedle immunizations proved to be as effective as subcutaneous immunizations without elevating undesired allergen-specific IgE. Moreover, microneedles could be stored at room temperature for at least three months without deterioration in coating integrity. Overall, these results suggest that coated microneedles are viable candidates for treating CMA, warranting further investigation.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"2858-2867\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01136\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01136","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Microneedles Coated with Cow's Milk Proteins: Immunogenicity, Stability, and Safety Assessment.
Cow's milk allergy (CMA) is one of the most frequently occurring food allergies in children, especially in infants less than 3 years old. Mindful avoidance of CMA-triggering foods and prompt epinephrine injection to overcome anaphylaxis in the case of accidental ingestion are the only options currently available to allergic subjects. This study investigates the potential of coated microneedles for delivering CMA into the skin as a novel approach to allergen immunotherapy. Precise amounts of cow's milk proteins (CMP) were dip-coated onto stainless steel microneedle patches and reproducibly delivered to mice epidermis and dermis. Microneedle delivery did not cause bleeding or visible erythema and did not induce skin alarmins, thymic stromal lymphopoietin (TSLP), and IL-33. Dose-dependent elevations in cow's milk allergen-specific IgG, IgG1, and IgG2a levels were observed in Balb/c mice after three weekly microneedle immunizations. Microneedle immunizations proved to be as effective as subcutaneous immunizations without elevating undesired allergen-specific IgE. Moreover, microneedles could be stored at room temperature for at least three months without deterioration in coating integrity. Overall, these results suggest that coated microneedles are viable candidates for treating CMA, warranting further investigation.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.