智能探针用于多模式癌症治疗:综述。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-05-05 Epub Date: 2025-04-14 DOI:10.1021/acs.molpharmaceut.5c00411
Pradip Pawar, Arati Prabhu
{"title":"智能探针用于多模式癌症治疗:综述。","authors":"Pradip Pawar, Arati Prabhu","doi":"10.1021/acs.molpharmaceut.5c00411","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant advancements in anticancer research, the performance statistics of current therapeutic regimens yield unsatisfactory outcomes. Issues such as high metastasis rates, drug resistance, limited efficacy, and severe side effects underscore the urgent need for safer and more effective strategies for tumor mitigation. One promising approach lies in the use of superparamagnetic iron oxide nanoparticles (SPIONs) for hybridized cancer therapy, leveraging their unique properties and functional versatility to enhance treatment efficacy and safety. They can serve as platforms for various therapeutic as well as diagnostic applications, enhancing imaging techniques such as magnetic resonance imaging. This paper presents an in-depth compilation of the application of nanoparticulate SPIONs amalgamates for multimodal cancer therapeutics. Physical phenomena such as light, heat, sound, and magnetism can be coupled to nanoparticulate delivery systems for developing targeted, precision medicine against cancer. Integration of noninvasive and effective platforms technologies such as photodynamic therapy, photothermal therapy, magnetic hyperthermia, and sonodynamic therapy hold great promise in counteracting the daunting challenges within cancer therapeutics.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 5","pages":"2372-2391"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart SPIONs for Multimodal Cancer Theranostics: A Review.\",\"authors\":\"Pradip Pawar, Arati Prabhu\",\"doi\":\"10.1021/acs.molpharmaceut.5c00411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite significant advancements in anticancer research, the performance statistics of current therapeutic regimens yield unsatisfactory outcomes. Issues such as high metastasis rates, drug resistance, limited efficacy, and severe side effects underscore the urgent need for safer and more effective strategies for tumor mitigation. One promising approach lies in the use of superparamagnetic iron oxide nanoparticles (SPIONs) for hybridized cancer therapy, leveraging their unique properties and functional versatility to enhance treatment efficacy and safety. They can serve as platforms for various therapeutic as well as diagnostic applications, enhancing imaging techniques such as magnetic resonance imaging. This paper presents an in-depth compilation of the application of nanoparticulate SPIONs amalgamates for multimodal cancer therapeutics. Physical phenomena such as light, heat, sound, and magnetism can be coupled to nanoparticulate delivery systems for developing targeted, precision medicine against cancer. Integration of noninvasive and effective platforms technologies such as photodynamic therapy, photothermal therapy, magnetic hyperthermia, and sonodynamic therapy hold great promise in counteracting the daunting challenges within cancer therapeutics.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\"22 5\",\"pages\":\"2372-2391\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.5c00411\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00411","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管抗癌研究取得了重大进展,但目前治疗方案的性能统计结果并不令人满意。诸如高转移率、耐药、有限的疗效和严重的副作用等问题强调了迫切需要更安全、更有效的肿瘤缓解策略。利用超顺磁性氧化铁纳米颗粒(SPIONs)进行杂交癌症治疗是一种很有前景的方法,利用其独特的特性和功能的多功能性来提高治疗效果和安全性。它们可以作为各种治疗和诊断应用的平台,增强磁共振成像等成像技术。本文介绍了纳米颗粒SPIONs汞合金在多模式癌症治疗中的应用的深入汇编。光、热、声和磁等物理现象可以与纳米颗粒输送系统相结合,用于开发针对癌症的精准药物。整合无创和有效的平台技术,如光动力疗法、光热疗法、磁热疗和声动力疗法,在应对癌症治疗中令人生畏的挑战方面有着巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart SPIONs for Multimodal Cancer Theranostics: A Review.

Despite significant advancements in anticancer research, the performance statistics of current therapeutic regimens yield unsatisfactory outcomes. Issues such as high metastasis rates, drug resistance, limited efficacy, and severe side effects underscore the urgent need for safer and more effective strategies for tumor mitigation. One promising approach lies in the use of superparamagnetic iron oxide nanoparticles (SPIONs) for hybridized cancer therapy, leveraging their unique properties and functional versatility to enhance treatment efficacy and safety. They can serve as platforms for various therapeutic as well as diagnostic applications, enhancing imaging techniques such as magnetic resonance imaging. This paper presents an in-depth compilation of the application of nanoparticulate SPIONs amalgamates for multimodal cancer therapeutics. Physical phenomena such as light, heat, sound, and magnetism can be coupled to nanoparticulate delivery systems for developing targeted, precision medicine against cancer. Integration of noninvasive and effective platforms technologies such as photodynamic therapy, photothermal therapy, magnetic hyperthermia, and sonodynamic therapy hold great promise in counteracting the daunting challenges within cancer therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信