酵母表面寡聚酶的高效展示促进了甘草酸水解和纤维素乙醇的生产。

IF 3.9 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2025-05-16 Epub Date: 2025-04-15 DOI:10.1021/acssynbio.4c00780
Qibin Wang, Qiuyan Sun, Jing Wang, Hu Liu, Chun Li
{"title":"酵母表面寡聚酶的高效展示促进了甘草酸水解和纤维素乙醇的生产。","authors":"Qibin Wang, Qiuyan Sun, Jing Wang, Hu Liu, Chun Li","doi":"10.1021/acssynbio.4c00780","DOIUrl":null,"url":null,"abstract":"<p><p>The subunit dissociation of oligomeric enzymes is a major challenge that limits their practical applications. In this study, yeast-surface-displayed tetrameric β-glucuronidase with a C-terminal anchor protein fusion was found partially dissociated into dimers. The coexpression of free and anchored subunits significantly improved the display efficiency and catalytic activity. Given that oligomeric enzymes may adopt a non-native conformation on the cell surface, the subunit interfaces of surface-displayed β-glucuronidase were <i>in situ</i> characterized using a Förster resonance energy transfer (FRET) strategy, and the tetrameric structure was well maintained in the coexpressed β-glucuronidases. Finally, the coexpression strategy was applied to yeast-surface-displayed oligomeric cellulases, significantly enhancing the activities of tetrameric endoglucanase and dimeric β-glucosidase and the concentration of cellulosic ethanol for the two-enzyme codisplaying strain. This work provides insights into the structure-activity relationship and the efficient utilization of surface-displayed oligomeric enzymes.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"1509-1522"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient Display of Oligomeric Enzymes on Yeast Surface for Enhanced Glycyrrhizin Hydrolysis and Cellulosic Ethanol Production.\",\"authors\":\"Qibin Wang, Qiuyan Sun, Jing Wang, Hu Liu, Chun Li\",\"doi\":\"10.1021/acssynbio.4c00780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The subunit dissociation of oligomeric enzymes is a major challenge that limits their practical applications. In this study, yeast-surface-displayed tetrameric β-glucuronidase with a C-terminal anchor protein fusion was found partially dissociated into dimers. The coexpression of free and anchored subunits significantly improved the display efficiency and catalytic activity. Given that oligomeric enzymes may adopt a non-native conformation on the cell surface, the subunit interfaces of surface-displayed β-glucuronidase were <i>in situ</i> characterized using a Förster resonance energy transfer (FRET) strategy, and the tetrameric structure was well maintained in the coexpressed β-glucuronidases. Finally, the coexpression strategy was applied to yeast-surface-displayed oligomeric cellulases, significantly enhancing the activities of tetrameric endoglucanase and dimeric β-glucosidase and the concentration of cellulosic ethanol for the two-enzyme codisplaying strain. This work provides insights into the structure-activity relationship and the efficient utilization of surface-displayed oligomeric enzymes.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"1509-1522\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00780\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00780","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

低聚酶的亚基解离是限制其实际应用的主要挑战。在这项研究中,酵母表面显示的具有c端锚定蛋白融合的四聚体β-葡萄糖醛酸酶被发现部分解离成二聚体。自由亚基和锚定亚基的共表达显著提高了显示效率和催化活性。考虑到低聚酶在细胞表面可能采用非天然构象,利用Förster共振能量转移(FRET)策略对表面显示的β-葡萄糖醛酸酶的亚基界面进行了原位表征,并在共表达的β-葡萄糖醛酸酶中很好地维持了四聚体结构。最后,将共表达策略应用于酵母表面显示的低聚纤维素酶,显著提高了四聚内切葡聚糖酶和二聚β-葡萄糖苷酶的活性以及两种酶共显示菌株的纤维素乙醇浓度。这项工作为表面显示的低聚酶的结构-活性关系和有效利用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Efficient Display of Oligomeric Enzymes on Yeast Surface for Enhanced Glycyrrhizin Hydrolysis and Cellulosic Ethanol Production.

The subunit dissociation of oligomeric enzymes is a major challenge that limits their practical applications. In this study, yeast-surface-displayed tetrameric β-glucuronidase with a C-terminal anchor protein fusion was found partially dissociated into dimers. The coexpression of free and anchored subunits significantly improved the display efficiency and catalytic activity. Given that oligomeric enzymes may adopt a non-native conformation on the cell surface, the subunit interfaces of surface-displayed β-glucuronidase were in situ characterized using a Förster resonance energy transfer (FRET) strategy, and the tetrameric structure was well maintained in the coexpressed β-glucuronidases. Finally, the coexpression strategy was applied to yeast-surface-displayed oligomeric cellulases, significantly enhancing the activities of tetrameric endoglucanase and dimeric β-glucosidase and the concentration of cellulosic ethanol for the two-enzyme codisplaying strain. This work provides insights into the structure-activity relationship and the efficient utilization of surface-displayed oligomeric enzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信