Rajeshkumar S Gop, Rishav Adhikary, Anuradha Venkatramani, Neha Sengar, Inder Pal Singh, Dulal Panda
{"title":"4-氨基-3',4'-二羟基查尔酮增加相分离液滴中的Tau动力学并抑制Tau聚集。","authors":"Rajeshkumar S Gop, Rishav Adhikary, Anuradha Venkatramani, Neha Sengar, Inder Pal Singh, Dulal Panda","doi":"10.1021/acschemneuro.4c00567","DOIUrl":null,"url":null,"abstract":"<p><p>The aggregation of the microtubule-associated protein tau is a distinctive characteristic of several neurodegenerative disorders like Alzheimer's disease and frontotemporal dementia. Small-molecule inhibitors have been investigated as a potential therapy for tau aggregation-related diseases. Here, we identified 4-Amino-3',4'-dihydroxychalcone (4-ADHC), a substituted aminochalcone, as an inhibitor of different stages of tau aggregation, namely, liquid-liquid phase separation, oligomerization, and filamentation. Size exclusion chromatography, absorbance, and fluorescence spectroscopic experiments suggested that 4-ADHC bound to purified tau. The dissociation constant for the binding of 4-ADHC to tau was determined to be 5.1 ± 0.8 μM using surface plasmon resonance. The compound potently inhibited heparin and arachidonic acid-induced tau aggregation in vitro. However, 4-ADHC neither inhibited tubulin polymerization nor the enzymatic activity of alcohol dehydrogenase and alkaline phosphatase. Fluorescence recovery after photobleaching experiments showed that 4-ADHC increased tau dynamics in phase-separated droplets, suggesting that the compound impeded the maturation of the droplets by increasing their liquid-like behavior. Further, atomic force microscopy, dot blot assay, and dynamic light scattering experiments demonstrated that the compound suppressed tau oligomerization. In addition, 4-ADHC inhibited tau filamentation and disaggregated preformed filaments. Thus, 4-ADHC is a candidate for developing potent tau aggregation inhibitors.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 9","pages":"1680-1693"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Amino-3',4'-dihydroxychalcone Increases Tau Dynamics in Phase-Separated Droplets and Inhibits Tau Aggregation.\",\"authors\":\"Rajeshkumar S Gop, Rishav Adhikary, Anuradha Venkatramani, Neha Sengar, Inder Pal Singh, Dulal Panda\",\"doi\":\"10.1021/acschemneuro.4c00567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aggregation of the microtubule-associated protein tau is a distinctive characteristic of several neurodegenerative disorders like Alzheimer's disease and frontotemporal dementia. Small-molecule inhibitors have been investigated as a potential therapy for tau aggregation-related diseases. Here, we identified 4-Amino-3',4'-dihydroxychalcone (4-ADHC), a substituted aminochalcone, as an inhibitor of different stages of tau aggregation, namely, liquid-liquid phase separation, oligomerization, and filamentation. Size exclusion chromatography, absorbance, and fluorescence spectroscopic experiments suggested that 4-ADHC bound to purified tau. The dissociation constant for the binding of 4-ADHC to tau was determined to be 5.1 ± 0.8 μM using surface plasmon resonance. The compound potently inhibited heparin and arachidonic acid-induced tau aggregation in vitro. However, 4-ADHC neither inhibited tubulin polymerization nor the enzymatic activity of alcohol dehydrogenase and alkaline phosphatase. Fluorescence recovery after photobleaching experiments showed that 4-ADHC increased tau dynamics in phase-separated droplets, suggesting that the compound impeded the maturation of the droplets by increasing their liquid-like behavior. Further, atomic force microscopy, dot blot assay, and dynamic light scattering experiments demonstrated that the compound suppressed tau oligomerization. In addition, 4-ADHC inhibited tau filamentation and disaggregated preformed filaments. Thus, 4-ADHC is a candidate for developing potent tau aggregation inhibitors.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"16 9\",\"pages\":\"1680-1693\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00567\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00567","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
4-Amino-3',4'-dihydroxychalcone Increases Tau Dynamics in Phase-Separated Droplets and Inhibits Tau Aggregation.
The aggregation of the microtubule-associated protein tau is a distinctive characteristic of several neurodegenerative disorders like Alzheimer's disease and frontotemporal dementia. Small-molecule inhibitors have been investigated as a potential therapy for tau aggregation-related diseases. Here, we identified 4-Amino-3',4'-dihydroxychalcone (4-ADHC), a substituted aminochalcone, as an inhibitor of different stages of tau aggregation, namely, liquid-liquid phase separation, oligomerization, and filamentation. Size exclusion chromatography, absorbance, and fluorescence spectroscopic experiments suggested that 4-ADHC bound to purified tau. The dissociation constant for the binding of 4-ADHC to tau was determined to be 5.1 ± 0.8 μM using surface plasmon resonance. The compound potently inhibited heparin and arachidonic acid-induced tau aggregation in vitro. However, 4-ADHC neither inhibited tubulin polymerization nor the enzymatic activity of alcohol dehydrogenase and alkaline phosphatase. Fluorescence recovery after photobleaching experiments showed that 4-ADHC increased tau dynamics in phase-separated droplets, suggesting that the compound impeded the maturation of the droplets by increasing their liquid-like behavior. Further, atomic force microscopy, dot blot assay, and dynamic light scattering experiments demonstrated that the compound suppressed tau oligomerization. In addition, 4-ADHC inhibited tau filamentation and disaggregated preformed filaments. Thus, 4-ADHC is a candidate for developing potent tau aggregation inhibitors.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research