在相同条件下制备的锌钛和铝掺杂氧化铜纳米颗粒的抗菌效果比较

IF 1.6 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Mustafa Yılmaz, Şehrazat Yaren Aykut, Muhammed Kıyami Erdim, Ayşegül Çelik Bozdoğan, Günseli Kurt Gür, Çiğdem Oruç
{"title":"在相同条件下制备的锌钛和铝掺杂氧化铜纳米颗粒的抗菌效果比较","authors":"Mustafa Yılmaz,&nbsp;Şehrazat Yaren Aykut,&nbsp;Muhammed Kıyami Erdim,&nbsp;Ayşegül Çelik Bozdoğan,&nbsp;Günseli Kurt Gür,&nbsp;Çiğdem Oruç","doi":"10.1002/jccs.70016","DOIUrl":null,"url":null,"abstract":"<p>The antibacterial nanoparticles have technological uses in many areas, from wall paint to clothing, from medicine to agriculture. Such copper oxide (CuO) nanoparticles can be easily produced by the sol–gel method. In this study, primarily pure CuO and CuO nanoparticles doped with 4%, 8%, 12%, and 16% zinc, titanium, and aluminum were produced by the sol–gel method. Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses of all produced nanoparticles were performed. The dimensions of pure CuO nanoparticles are approximately 50 nm, while the doped nanoparticles are approximately 80 nm. Bacterial cultivation was carried out using the nanoparticles that had been converted into tablets, with <i>Escherichia coli</i> and <i>Agrobacterium tumefaciens</i> as the test microorganisms. When disc diffusion test results were evaluated, it was generally observed that doping increased the antibacterial effect compared to pure CuO. The additives providing the antibacterial effect for <i>E. coli</i> caused the inhibition zones to grow at an average rate of Al (27%), Zn (15%), and TiO (6%), respectively. In <i>A. tumefaciens</i> bacteria, an increase was observed in the antibacterial effect inhibition zones with Al and Zn additives, while a decrease was observed with TiO additives. As a result, it was seen that CuO doping increased the antibacterial effect, and the best effect was Al doping. When all data were evaluated, the highest antibacterial effect was achieved with 8% Aluminum additive, resulting in a 34% increase in the inhibition diameter for <i>E. coli</i> and a 37% increase for <i>A. tumefaciens</i>.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 5","pages":"464-475"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the antimicrobial effects of zinc titanium and aluminum doped copper oxide nanoparticles produced under the same conditions\",\"authors\":\"Mustafa Yılmaz,&nbsp;Şehrazat Yaren Aykut,&nbsp;Muhammed Kıyami Erdim,&nbsp;Ayşegül Çelik Bozdoğan,&nbsp;Günseli Kurt Gür,&nbsp;Çiğdem Oruç\",\"doi\":\"10.1002/jccs.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The antibacterial nanoparticles have technological uses in many areas, from wall paint to clothing, from medicine to agriculture. Such copper oxide (CuO) nanoparticles can be easily produced by the sol–gel method. In this study, primarily pure CuO and CuO nanoparticles doped with 4%, 8%, 12%, and 16% zinc, titanium, and aluminum were produced by the sol–gel method. Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses of all produced nanoparticles were performed. The dimensions of pure CuO nanoparticles are approximately 50 nm, while the doped nanoparticles are approximately 80 nm. Bacterial cultivation was carried out using the nanoparticles that had been converted into tablets, with <i>Escherichia coli</i> and <i>Agrobacterium tumefaciens</i> as the test microorganisms. When disc diffusion test results were evaluated, it was generally observed that doping increased the antibacterial effect compared to pure CuO. The additives providing the antibacterial effect for <i>E. coli</i> caused the inhibition zones to grow at an average rate of Al (27%), Zn (15%), and TiO (6%), respectively. In <i>A. tumefaciens</i> bacteria, an increase was observed in the antibacterial effect inhibition zones with Al and Zn additives, while a decrease was observed with TiO additives. As a result, it was seen that CuO doping increased the antibacterial effect, and the best effect was Al doping. When all data were evaluated, the highest antibacterial effect was achieved with 8% Aluminum additive, resulting in a 34% increase in the inhibition diameter for <i>E. coli</i> and a 37% increase for <i>A. tumefaciens</i>.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"72 5\",\"pages\":\"464-475\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70016\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70016","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌纳米颗粒在许多领域都有技术用途,从墙漆到服装,从医药到农业。这种氧化铜纳米颗粒可以通过溶胶-凝胶法制备。在本研究中,通过溶胶-凝胶法制备了掺杂4%、8%、12%和16%锌、钛和铝的CuO和CuO纳米颗粒。采用场发射扫描电镜(FESEM)、傅里叶变换红外光谱(FTIR)和x射线衍射(XRD)对制备的纳米颗粒进行了分析。纯CuO纳米粒子的尺寸约为50 nm,而掺杂的纳米粒子的尺寸约为80 nm。利用转化成片剂的纳米颗粒进行细菌培养,以大肠埃希菌和农杆菌为试验微生物。在对光盘扩散试验结果进行评价时,普遍发现与纯CuO相比,掺杂后的抗菌效果有所提高。对大肠杆菌具有抑菌作用的添加剂,其抑菌带的平均生长速率分别为Al(27%)、Zn(15%)和TiO(6%)。添加Al和Zn后,抑菌效果抑制区增加,添加TiO后抑菌效果抑制区减少。结果表明,CuO掺杂提高了抗菌效果,其中Al掺杂效果最好。当所有数据被评估时,8%的铝添加剂达到最高的抗菌效果,导致大肠杆菌的抑制直径增加34%,对大肠杆菌的抑制直径增加37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the antimicrobial effects of zinc titanium and aluminum doped copper oxide nanoparticles produced under the same conditions

The antibacterial nanoparticles have technological uses in many areas, from wall paint to clothing, from medicine to agriculture. Such copper oxide (CuO) nanoparticles can be easily produced by the sol–gel method. In this study, primarily pure CuO and CuO nanoparticles doped with 4%, 8%, 12%, and 16% zinc, titanium, and aluminum were produced by the sol–gel method. Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses of all produced nanoparticles were performed. The dimensions of pure CuO nanoparticles are approximately 50 nm, while the doped nanoparticles are approximately 80 nm. Bacterial cultivation was carried out using the nanoparticles that had been converted into tablets, with Escherichia coli and Agrobacterium tumefaciens as the test microorganisms. When disc diffusion test results were evaluated, it was generally observed that doping increased the antibacterial effect compared to pure CuO. The additives providing the antibacterial effect for E. coli caused the inhibition zones to grow at an average rate of Al (27%), Zn (15%), and TiO (6%), respectively. In A. tumefaciens bacteria, an increase was observed in the antibacterial effect inhibition zones with Al and Zn additives, while a decrease was observed with TiO additives. As a result, it was seen that CuO doping increased the antibacterial effect, and the best effect was Al doping. When all data were evaluated, the highest antibacterial effect was achieved with 8% Aluminum additive, resulting in a 34% increase in the inhibition diameter for E. coli and a 37% increase for A. tumefaciens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
11.10%
发文量
216
审稿时长
7.5 months
期刊介绍: The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信