空间位阻、偶极相互作用和外部机械力对柱状层状金属-有机框架中转子动力学调制的协同效应

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ruipeng Fan, Da Shu, Songyou Yao, Xiaoyue Zhang* and Yue Zheng*, 
{"title":"空间位阻、偶极相互作用和外部机械力对柱状层状金属-有机框架中转子动力学调制的协同效应","authors":"Ruipeng Fan,&nbsp;Da Shu,&nbsp;Songyou Yao,&nbsp;Xiaoyue Zhang* and Yue Zheng*,&nbsp;","doi":"10.1021/acs.jpcc.5c0159110.1021/acs.jpcc.5c01591","DOIUrl":null,"url":null,"abstract":"<p >The introduction of polar rotors is a potential strategy for improving the functionality and tunability of pillar-layered metal–organic frameworks (PLMOFs). However, the complexity due to electromechanical coupling hinders the in-depth understanding of rotor dynamics in polar PLMOFs. In this article, we employed ab initio molecular dynamics (AIMD) combined with well-tempered metadynamics (WT-MTD) to systematically investigate the rotational behavior of rotors in polar PLMOFs, with a focus on the synergistic effects of steric hindrance, dipole interactions, and external mechanical force. By comparing the relative energy of polar Cu<sub>2</sub>(fbdc)<sub>2</sub>(dabco) and nonpolar Cu<sub>2</sub>(bdc)<sub>2</sub>(dabco) under external mechanical force, we found that the longer-range dipole interactions alter the rotor’s conformation and reduce the steric hindrance between the rotor and the framework. This leads to a lower rotational barrier and a more monotonic energy profile. Furthermore, the dipole–dipole interactions between adjacent rotors enhance the rotor’s sensitivity and flexibility through redistribution of charge density and deformation of the rotor, which may be critical for reducing the rotational barrier under external mechanical force. Based on these findings, we propose a mechanical strategy utilizing interlayer stress in a designed MOF-on-MOF structure for modulating polar rotor dynamics, which provides a useful method for developing PLMOF functional materials with tunable rotational properties.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 19","pages":"9231–9238 9231–9238"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effects of Steric Hindrance, Dipole Interactions, and External Mechanical Force on Modulating Rotor Dynamics in Pillar-Layered Metal–Organic Frameworks\",\"authors\":\"Ruipeng Fan,&nbsp;Da Shu,&nbsp;Songyou Yao,&nbsp;Xiaoyue Zhang* and Yue Zheng*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c0159110.1021/acs.jpcc.5c01591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The introduction of polar rotors is a potential strategy for improving the functionality and tunability of pillar-layered metal–organic frameworks (PLMOFs). However, the complexity due to electromechanical coupling hinders the in-depth understanding of rotor dynamics in polar PLMOFs. In this article, we employed ab initio molecular dynamics (AIMD) combined with well-tempered metadynamics (WT-MTD) to systematically investigate the rotational behavior of rotors in polar PLMOFs, with a focus on the synergistic effects of steric hindrance, dipole interactions, and external mechanical force. By comparing the relative energy of polar Cu<sub>2</sub>(fbdc)<sub>2</sub>(dabco) and nonpolar Cu<sub>2</sub>(bdc)<sub>2</sub>(dabco) under external mechanical force, we found that the longer-range dipole interactions alter the rotor’s conformation and reduce the steric hindrance between the rotor and the framework. This leads to a lower rotational barrier and a more monotonic energy profile. Furthermore, the dipole–dipole interactions between adjacent rotors enhance the rotor’s sensitivity and flexibility through redistribution of charge density and deformation of the rotor, which may be critical for reducing the rotational barrier under external mechanical force. Based on these findings, we propose a mechanical strategy utilizing interlayer stress in a designed MOF-on-MOF structure for modulating polar rotor dynamics, which provides a useful method for developing PLMOF functional materials with tunable rotational properties.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 19\",\"pages\":\"9231–9238 9231–9238\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01591\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01591","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

极性转子的引入是提高柱状层状金属有机框架(PLMOFs)功能和可调性的潜在策略。然而,由于机电耦合的复杂性阻碍了对极性PLMOFs转子动力学的深入理解。在本文中,我们采用从头算分子动力学(AIMD)和良好回调元动力学(WT-MTD)相结合的方法系统地研究了极性PLMOFs中转子的旋转行为,重点研究了空间位阻、偶极相互作用和外部机械力的协同效应。通过比较极性Cu2(fbdc)2(dabco)和非极性Cu2(bdc)2(dabco)在机械外力作用下的相对能量,发现较长距离偶极相互作用改变了转子的构象,减小了转子与骨架之间的位阻。这导致较低的旋转势垒和更单调的能量分布。此外,相邻转子之间的偶极-偶极相互作用通过重新分配电荷密度和转子的变形来增强转子的灵敏度和柔韧性,这可能是减少机械外力作用下旋转障碍的关键。基于这些发现,我们提出了一种利用MOF-on-MOF结构的层间应力来调制极性转子动力学的机械策略,这为开发具有可调谐旋转性能的PLMOF功能材料提供了一种有用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Effects of Steric Hindrance, Dipole Interactions, and External Mechanical Force on Modulating Rotor Dynamics in Pillar-Layered Metal–Organic Frameworks

Synergistic Effects of Steric Hindrance, Dipole Interactions, and External Mechanical Force on Modulating Rotor Dynamics in Pillar-Layered Metal–Organic Frameworks

The introduction of polar rotors is a potential strategy for improving the functionality and tunability of pillar-layered metal–organic frameworks (PLMOFs). However, the complexity due to electromechanical coupling hinders the in-depth understanding of rotor dynamics in polar PLMOFs. In this article, we employed ab initio molecular dynamics (AIMD) combined with well-tempered metadynamics (WT-MTD) to systematically investigate the rotational behavior of rotors in polar PLMOFs, with a focus on the synergistic effects of steric hindrance, dipole interactions, and external mechanical force. By comparing the relative energy of polar Cu2(fbdc)2(dabco) and nonpolar Cu2(bdc)2(dabco) under external mechanical force, we found that the longer-range dipole interactions alter the rotor’s conformation and reduce the steric hindrance between the rotor and the framework. This leads to a lower rotational barrier and a more monotonic energy profile. Furthermore, the dipole–dipole interactions between adjacent rotors enhance the rotor’s sensitivity and flexibility through redistribution of charge density and deformation of the rotor, which may be critical for reducing the rotational barrier under external mechanical force. Based on these findings, we propose a mechanical strategy utilizing interlayer stress in a designed MOF-on-MOF structure for modulating polar rotor dynamics, which provides a useful method for developing PLMOF functional materials with tunable rotational properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信