分数阶拉普拉斯算子及其推广问题

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Salem Ben Said, Selma Negzaoui
{"title":"分数阶拉普拉斯算子及其推广问题","authors":"Salem Ben Said,&nbsp;Selma Negzaoui","doi":"10.1002/mma.10846","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we establish four equivalent characterizations of the fractional Laplacian operator \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math> with \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>σ</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ 0&amp;amp;lt;\\sigma &amp;amp;lt;1 $$</annotation>\n </semantics></math>, in some class of functions on \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}&amp;amp;amp;#x0005E;d $$</annotation>\n </semantics></math>. Here, \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\Delta}_k $$</annotation>\n </semantics></math> denotes the Dunkl differential-difference Laplacian and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math> is a multiplicity function for the Dunkl operators. Starting from the natural Fourier characterization of \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math>, we prove Bochner's and singular integral characterizations of \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math>. A large part of the paper is dedicated to the fourth characterization where we obtain the fractional Laplacian \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math> as a Dirichlet-to-Neumann map via an extension problem to the upper half-plane. We also get a Poisson formula for the extension.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9840-9852"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fractional Laplacian and Its Extension Problem\",\"authors\":\"Salem Ben Said,&nbsp;Selma Negzaoui\",\"doi\":\"10.1002/mma.10846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we establish four equivalent characterizations of the fractional Laplacian operator \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math> with \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>&lt;</mo>\\n <mi>σ</mi>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ 0&amp;amp;lt;\\\\sigma &amp;amp;lt;1 $$</annotation>\\n </semantics></math>, in some class of functions on \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathbb{R}}&amp;amp;amp;#x0005E;d $$</annotation>\\n </semantics></math>. Here, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\Delta}_k $$</annotation>\\n </semantics></math> denotes the Dunkl differential-difference Laplacian and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math> is a multiplicity function for the Dunkl operators. Starting from the natural Fourier characterization of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math>, we prove Bochner's and singular integral characterizations of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math>. A large part of the paper is dedicated to the fourth characterization where we obtain the fractional Laplacian \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math> as a Dirichlet-to-Neumann map via an extension problem to the upper half-plane. We also get a Poisson formula for the extension.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"9840-9852\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10846\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10846","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了分数阶拉普拉斯算子(−‖x‖Δ k)的四个等效表征) σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$ with 0 &lt;σ &lt;1 $$ 0&amp;lt;\sigma &amp;lt;1 $$,在某类函数中,在$$ {\mathbb{R}}&amp;amp;#x0005E;d $$上。这里,Δ k $$ {\Delta}_k $$表示Dunkl微分-差分拉普拉斯算子,k $$ k $$是Dunkl算子的多重函数。从(−‖x‖Δ k)的自然傅立叶表征开始σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$,我们证明了(−‖x‖Δ k)的Bochner和奇异积分表征。σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$。本文的很大一部分是致力于第四个表征,我们得到分数阶拉普拉斯(−‖x‖Δ k) σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$作为Dirichlet-to-Neumann映射通过扩展问题到上半平面。我们也得到了扩展的泊松公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fractional Laplacian and Its Extension Problem

In this paper, we establish four equivalent characterizations of the fractional Laplacian operator ( x Δ k ) σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$ with 0 < σ < 1 $$ 0&amp;lt;\sigma &amp;lt;1 $$ , in some class of functions on d $$ {\mathbb{R}}&amp;amp;#x0005E;d $$ . Here, Δ k $$ {\Delta}_k $$ denotes the Dunkl differential-difference Laplacian and k $$ k $$ is a multiplicity function for the Dunkl operators. Starting from the natural Fourier characterization of ( x Δ k ) σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$ , we prove Bochner's and singular integral characterizations of ( x Δ k ) σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$ . A large part of the paper is dedicated to the fourth characterization where we obtain the fractional Laplacian ( x Δ k ) σ $$ {\left(-\left\Vert x\right\Vert {\Delta}_k\right)}&amp;amp;#x0005E;{\sigma } $$ as a Dirichlet-to-Neumann map via an extension problem to the upper half-plane. We also get a Poisson formula for the extension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信