求助PDF
{"title":"分数阶拉普拉斯算子及其推广问题","authors":"Salem Ben Said, Selma Negzaoui","doi":"10.1002/mma.10846","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we establish four equivalent characterizations of the fractional Laplacian operator \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math> with \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>σ</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ 0&amp;lt;\\sigma &amp;lt;1 $$</annotation>\n </semantics></math>, in some class of functions on \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}&amp;amp;#x0005E;d $$</annotation>\n </semantics></math>. Here, \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\Delta}_k $$</annotation>\n </semantics></math> denotes the Dunkl differential-difference Laplacian and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math> is a multiplicity function for the Dunkl operators. Starting from the natural Fourier characterization of \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math>, we prove Bochner's and singular integral characterizations of \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math>. A large part of the paper is dedicated to the fourth characterization where we obtain the fractional Laplacian \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>‖</mo>\n <mi>x</mi>\n <mo>‖</mo>\n <msub>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>σ</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\left\\Vert x\\right\\Vert {\\Delta}_k\\right)}&amp;amp;#x0005E;{\\sigma } $$</annotation>\n </semantics></math> as a Dirichlet-to-Neumann map via an extension problem to the upper half-plane. We also get a Poisson formula for the extension.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9840-9852"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fractional Laplacian and Its Extension Problem\",\"authors\":\"Salem Ben Said, Selma Negzaoui\",\"doi\":\"10.1002/mma.10846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we establish four equivalent characterizations of the fractional Laplacian operator \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math> with \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>σ</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ 0&amp;lt;\\\\sigma &amp;lt;1 $$</annotation>\\n </semantics></math>, in some class of functions on \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathbb{R}}&amp;amp;#x0005E;d $$</annotation>\\n </semantics></math>. Here, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\Delta}_k $$</annotation>\\n </semantics></math> denotes the Dunkl differential-difference Laplacian and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math> is a multiplicity function for the Dunkl operators. Starting from the natural Fourier characterization of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math>, we prove Bochner's and singular integral characterizations of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math>. A large part of the paper is dedicated to the fourth characterization where we obtain the fractional Laplacian \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mo>‖</mo>\\n <mi>x</mi>\\n <mo>‖</mo>\\n <msub>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\left\\\\Vert x\\\\right\\\\Vert {\\\\Delta}_k\\\\right)}&amp;amp;#x0005E;{\\\\sigma } $$</annotation>\\n </semantics></math> as a Dirichlet-to-Neumann map via an extension problem to the upper half-plane. We also get a Poisson formula for the extension.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"9840-9852\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10846\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10846","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用