具有泊松跳变和状态切换的脉冲随机系统的稳定性分析

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Daipeng Kuang, Shuihong Xiao, Jianli Li
{"title":"具有泊松跳变和状态切换的脉冲随机系统的稳定性分析","authors":"Daipeng Kuang,&nbsp;Shuihong Xiao,&nbsp;Jianli Li","doi":"10.1002/mma.10815","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper is devoted to discussing the \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>th-moment input-to-state stability (\n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS), \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>th-moment integral-ISS (\n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-iISS), and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>th-moment \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>e</mi>\n </mrow>\n <mrow>\n <mi>σ</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {e}&amp;#x0005E;{\\sigma t} $$</annotation>\n </semantics></math>-ISS (\n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>e</mi>\n </mrow>\n <mrow>\n <mi>σ</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {e}&amp;#x0005E;{\\sigma t} $$</annotation>\n </semantics></math>-\n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS) for impulsive stochastic delayed differential system via the Lyapunov–Krasovskii functional and some analytical skills. For the fixed moment impulse, the results show that if the continuous dynamics is \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS, then the system is \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS with respect to a lower bound of the average impulsive interval. For the random moment impulse, the sufficient conditions are given to make the system \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS when continuous dynamics is \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS, and the intensity and density of random impulses are constrained at the same time. Furthermore, they qualitatively reveal the impact of delay, regime switching and random impulses on the system is \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-ISS. Finally, examples and numerical simulations are adopted to verify the validity of theoretical analysis.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9520-9532"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Impulsive Stochastic Systems With Poisson Jumps and Regime Switching\",\"authors\":\"Daipeng Kuang,&nbsp;Shuihong Xiao,&nbsp;Jianli Li\",\"doi\":\"10.1002/mma.10815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper is devoted to discussing the \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>th-moment input-to-state stability (\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS), \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>th-moment integral-ISS (\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-iISS), and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>th-moment \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n <mi>t</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {e}&amp;#x0005E;{\\\\sigma t} $$</annotation>\\n </semantics></math>-ISS (\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <mrow>\\n <mi>σ</mi>\\n <mi>t</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {e}&amp;#x0005E;{\\\\sigma t} $$</annotation>\\n </semantics></math>-\\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS) for impulsive stochastic delayed differential system via the Lyapunov–Krasovskii functional and some analytical skills. For the fixed moment impulse, the results show that if the continuous dynamics is \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS, then the system is \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS with respect to a lower bound of the average impulsive interval. For the random moment impulse, the sufficient conditions are given to make the system \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS when continuous dynamics is \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS, and the intensity and density of random impulses are constrained at the same time. Furthermore, they qualitatively reveal the impact of delay, regime switching and random impulses on the system is \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-ISS. Finally, examples and numerical simulations are adopted to verify the validity of theoretical analysis.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"9520-9532\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10815\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10815","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于讨论p $$ p $$ th矩输入-状态稳定性(p $$ p $$ -ISS),p $$ p $$ th-矩积分- iss (p $$ p $$ -iISS),和p $$ p $$ th矩e σ t $$ {e}&#x0005E;{\sigma t} $$ -ISS (eσ t $$ {e}&#x0005E;{\sigma t} $$ - p $$ p $$ - iss)通过Lyapunov-Krasovskii泛函和一些分析技巧。对于定矩脉冲,结果表明,如果连续动力学为p $$ p $$ -ISS,则系统相对于平均脉冲区间的下界为p $$ p $$ -ISS。对于随机力矩脉冲,给出了连续动力学为p $$ p $$ -ISS时系统为p $$ p $$ -ISS的充分条件,同时对随机脉冲的强度和密度进行了约束。此外,它们定性地揭示了延迟、状态切换和随机脉冲对系统的影响是p $$ p $$ -ISS。最后通过算例和数值仿真验证了理论分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Analysis of Impulsive Stochastic Systems With Poisson Jumps and Regime Switching

This paper is devoted to discussing the p $$ p $$ th-moment input-to-state stability ( p $$ p $$ -ISS), p $$ p $$ th-moment integral-ISS ( p $$ p $$ -iISS), and p $$ p $$ th-moment e σ t $$ {e}&#x0005E;{\sigma t} $$ -ISS ( e σ t $$ {e}&#x0005E;{\sigma t} $$ - p $$ p $$ -ISS) for impulsive stochastic delayed differential system via the Lyapunov–Krasovskii functional and some analytical skills. For the fixed moment impulse, the results show that if the continuous dynamics is p $$ p $$ -ISS, then the system is p $$ p $$ -ISS with respect to a lower bound of the average impulsive interval. For the random moment impulse, the sufficient conditions are given to make the system p $$ p $$ -ISS when continuous dynamics is p $$ p $$ -ISS, and the intensity and density of random impulses are constrained at the same time. Furthermore, they qualitatively reveal the impact of delay, regime switching and random impulses on the system is p $$ p $$ -ISS. Finally, examples and numerical simulations are adopted to verify the validity of theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信