三重控制类度量空间(θ,G)-拟定缩的不动点结果及其应用

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Sadia Farooq, Naeem Saleem, Maggie Aphane, Asima Razzaque
{"title":"三重控制类度量空间(θ,G)-拟定缩的不动点结果及其应用","authors":"Sadia Farooq,&nbsp;Naeem Saleem,&nbsp;Maggie Aphane,&nbsp;Asima Razzaque","doi":"10.1002/mma.10854","DOIUrl":null,"url":null,"abstract":"<p>In this article, we provided fixed-point results for \n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Θ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(\\Theta, {G}_1\\right) $$</annotation>\n </semantics></math>-quasirational contraction and \n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Θ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(\\Theta, {G}_2\\right) $$</annotation>\n </semantics></math>-quasirational contraction within the setting of triple controlled metric-like spaces. Furthermore, we demonstrate that this extension of spaces does not constitute a Hausdorff space. Our results are more generalized with respect to the existing ones in the literature. Additionally, we also discussed the existence and uniqueness of solution of Fredholm integral equation using our results within the setting of triple controlled metric-like spaces. In this sequel, we apply our primary finding to nonlinear fractional differential equations. Moreover, we introduce triple controlled metric-like spaces endowed with a graph, along with an open question.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9920-9933"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10854","citationCount":"0","resultStr":"{\"title\":\"Fixed-Point Results for (θ,G)-Quasirational Contraction in Triple Controlled Metric-Like Spaces With Applications\",\"authors\":\"Sadia Farooq,&nbsp;Naeem Saleem,&nbsp;Maggie Aphane,&nbsp;Asima Razzaque\",\"doi\":\"10.1002/mma.10854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we provided fixed-point results for \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Θ</mi>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(\\\\Theta, {G}_1\\\\right) $$</annotation>\\n </semantics></math>-quasirational contraction and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Θ</mi>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(\\\\Theta, {G}_2\\\\right) $$</annotation>\\n </semantics></math>-quasirational contraction within the setting of triple controlled metric-like spaces. Furthermore, we demonstrate that this extension of spaces does not constitute a Hausdorff space. Our results are more generalized with respect to the existing ones in the literature. Additionally, we also discussed the existence and uniqueness of solution of Fredholm integral equation using our results within the setting of triple controlled metric-like spaces. In this sequel, we apply our primary finding to nonlinear fractional differential equations. Moreover, we introduce triple controlled metric-like spaces endowed with a graph, along with an open question.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"9920-9933\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10854\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10854","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为(Θ,g1) $$ \left(\Theta, {G}_1\right) $$ -准定量收缩和(Θ,g2) $$ \left(\Theta, {G}_2\right) $$ -拟定缩在三重控制的类度量空间中。进一步,我们证明了这种空间的扩展并不构成一个Hausdorff空间。我们的结果与文献中现有的结果相比更具普遍性。此外,我们还利用我们的结果在三重控制的类度量空间中讨论了Fredholm积分方程解的存在唯一性。在这个续集中,我们将我们的主要发现应用于非线性分数阶微分方程。此外,我们引入了具有图的三重控制类度量空间,以及一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Point Results for (θ,G)-Quasirational Contraction in Triple Controlled Metric-Like Spaces With Applications

In this article, we provided fixed-point results for ( Θ , G 1 ) $$ \left(\Theta, {G}_1\right) $$ -quasirational contraction and ( Θ , G 2 ) $$ \left(\Theta, {G}_2\right) $$ -quasirational contraction within the setting of triple controlled metric-like spaces. Furthermore, we demonstrate that this extension of spaces does not constitute a Hausdorff space. Our results are more generalized with respect to the existing ones in the literature. Additionally, we also discussed the existence and uniqueness of solution of Fredholm integral equation using our results within the setting of triple controlled metric-like spaces. In this sequel, we apply our primary finding to nonlinear fractional differential equations. Moreover, we introduce triple controlled metric-like spaces endowed with a graph, along with an open question.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信