{"title":"时间尺度上动力方程的反系数问题","authors":"Ganesh Ashok Satpute, Syed Abbas","doi":"10.1002/mma.10872","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, we have worked toward developing the theory for the inverse coefficient problems on an arbitrary time scale. We considered a general \n<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>th order linear dynamic equation \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>y</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n </msup>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n <mo>+</mo>\n <msubsup>\n <mrow>\n <mo>∑</mo>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msubsup>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n <msup>\n <mrow>\n <mi>y</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mi>i</mi>\n </mrow>\n </msup>\n </mrow>\n </msup>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {y}&amp;#x0005E;{\\Delta&amp;#x0005E;n}(t)&amp;#x0002B;{\\sum}_{i&amp;#x0003D;1}&amp;#x0005E;n{p}_i(t){y}&amp;#x0005E;{\\Delta&amp;#x0005E;{n-i}}(t)&amp;#x0003D;f(t) $$</annotation>\n </semantics></math> on arbitrary time scale \n<span></span><math>\n <mrow>\n <mi>𝕋</mi>\n </mrow></math>. We investigated inverse problems of determining the regressive coefficients \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {p}_i $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n </mrow>\n <annotation>$$ f $$</annotation>\n </semantics></math> when one or more solutions are known or some additional information regarding the solution is provided. We proved the existence and uniqueness of results for well-posed problems. We have solved some problems explicitly on isolated time scale domains. We provided several examples to validate our results and some interesting applications in finance, electro-prospecting, and epidemiology.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"10114-10127"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Coefficient Problems for Dynamic Equations on Time Scales\",\"authors\":\"Ganesh Ashok Satpute, Syed Abbas\",\"doi\":\"10.1002/mma.10872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this article, we have worked toward developing the theory for the inverse coefficient problems on an arbitrary time scale. We considered a general \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math>th order linear dynamic equation \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>y</mi>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n <mo>+</mo>\\n <msubsup>\\n <mrow>\\n <mo>∑</mo>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msubsup>\\n <msub>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n <msup>\\n <mrow>\\n <mi>y</mi>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>i</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {y}&amp;#x0005E;{\\\\Delta&amp;#x0005E;n}(t)&amp;#x0002B;{\\\\sum}_{i&amp;#x0003D;1}&amp;#x0005E;n{p}_i(t){y}&amp;#x0005E;{\\\\Delta&amp;#x0005E;{n-i}}(t)&amp;#x0003D;f(t) $$</annotation>\\n </semantics></math> on arbitrary time scale \\n<span></span><math>\\n <mrow>\\n <mi>𝕋</mi>\\n </mrow></math>. We investigated inverse problems of determining the regressive coefficients \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {p}_i $$</annotation>\\n </semantics></math> and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <annotation>$$ f $$</annotation>\\n </semantics></math> when one or more solutions are known or some additional information regarding the solution is provided. We proved the existence and uniqueness of results for well-posed problems. We have solved some problems explicitly on isolated time scale domains. We provided several examples to validate our results and some interesting applications in finance, electro-prospecting, and epidemiology.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"10114-10127\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10872\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们致力于在任意时间尺度上发展反系数问题的理论。我们考虑一个一般的n $$ n $$阶线性动力学方程y Δ n(t) +∑I = 1 n pI (t) y Δ n - I(t) = f (t) $$ {y}&#x0005E;{\Delta&#x0005E;n}(t)&#x0002B;{\sum}_{i&#x0003D;1}&#x0005E;n{p}_i(t){y}&#x0005E;{\Delta&#x0005E;{n-i}}(t)&#x0003D;f(t) $$在任意时间尺度上。我们研究了当一个或多个解已知或一些其他解时确定回归系数p i $$ {p}_i $$和f $$ f $$的逆问题提供了有关解决方案的信息。证明了适定问题结果的存在唯一性。我们已经明确地解决了孤立时间尺度域上的一些问题。我们提供了几个例子来验证我们的结果以及在金融、电勘探和流行病学方面的一些有趣的应用。
Inverse Coefficient Problems for Dynamic Equations on Time Scales
In this article, we have worked toward developing the theory for the inverse coefficient problems on an arbitrary time scale. We considered a general
th order linear dynamic equation
on arbitrary time scale
. We investigated inverse problems of determining the regressive coefficients
and
when one or more solutions are known or some additional information regarding the solution is provided. We proved the existence and uniqueness of results for well-posed problems. We have solved some problems explicitly on isolated time scale domains. We provided several examples to validate our results and some interesting applications in finance, electro-prospecting, and epidemiology.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.