具有弱奇异核分布阶Riesz分数算子的多项阶时-空分数波模型的有效数值求解方法及稳定性分析

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Saeed Kosari, Mohammadhossein Derakhshan
{"title":"具有弱奇异核分布阶Riesz分数算子的多项阶时-空分数波模型的有效数值求解方法及稳定性分析","authors":"Saeed Kosari,&nbsp;Mohammadhossein Derakhshan","doi":"10.1002/mma.10860","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this manuscript, we propose an efficient numerical approach to solve the time-space fractional wave model of multiterm order, incorporating Riesz fractional operators of distributed order with a weakly singular kernel. The approach combines numerical techniques to approximate the model in both the spatial and temporal directions. For the time variable, the \n<span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mn>1</mn>\n </mrow>\n <annotation>$$ L1 $$</annotation>\n </semantics></math> approximation is employed, while a second-order accurate fractional-centered difference method is used for the spatial variable. We provide a detailed stability and convergence analysis for the fully discrete numerical scheme. To demonstrate the accuracy and efficiency of the proposed method, we present and simulate two numerical examples. The results of these examples are displayed graphically to illustrate the effectiveness of the approach.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9993-10007"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Numerical Approach for Solving Time-Space Fractional Wave Model of Multiterm Order Involving the Riesz Fractional Operators of Distributed Order With the Weakly Singular Kernel Along With Stability Analysis\",\"authors\":\"Saeed Kosari,&nbsp;Mohammadhossein Derakhshan\",\"doi\":\"10.1002/mma.10860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this manuscript, we propose an efficient numerical approach to solve the time-space fractional wave model of multiterm order, incorporating Riesz fractional operators of distributed order with a weakly singular kernel. The approach combines numerical techniques to approximate the model in both the spatial and temporal directions. For the time variable, the \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ L1 $$</annotation>\\n </semantics></math> approximation is employed, while a second-order accurate fractional-centered difference method is used for the spatial variable. We provide a detailed stability and convergence analysis for the fully discrete numerical scheme. To demonstrate the accuracy and efficiency of the proposed method, we present and simulate two numerical examples. The results of these examples are displayed graphically to illustrate the effectiveness of the approach.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"9993-10007\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10860\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10860","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解多项阶时-空分数阶波模型的有效数值方法,该方法将分布阶Riesz分数算子与弱奇异核结合起来。该方法结合数值技术在空间和时间两个方向上近似模型。时间变量采用1 $$ L1 $$近似,空间变量采用二阶精确分数中心差分法。对完全离散数值格式进行了详细的稳定性和收敛性分析。为了证明该方法的准确性和有效性,我们给出了两个数值算例并进行了仿真。这些例子的结果以图形方式显示,以说明该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Numerical Approach for Solving Time-Space Fractional Wave Model of Multiterm Order Involving the Riesz Fractional Operators of Distributed Order With the Weakly Singular Kernel Along With Stability Analysis

In this manuscript, we propose an efficient numerical approach to solve the time-space fractional wave model of multiterm order, incorporating Riesz fractional operators of distributed order with a weakly singular kernel. The approach combines numerical techniques to approximate the model in both the spatial and temporal directions. For the time variable, the L 1 $$ L1 $$ approximation is employed, while a second-order accurate fractional-centered difference method is used for the spatial variable. We provide a detailed stability and convergence analysis for the fully discrete numerical scheme. To demonstrate the accuracy and efficiency of the proposed method, we present and simulate two numerical examples. The results of these examples are displayed graphically to illustrate the effectiveness of the approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信