T. A. M. Torlaema, Nur Farhana Jaafar, A. A. A. Mutalib, A. H. Lahuri
{"title":"促进2,4-二氯苯酚光降解的SnO催化剂的绿色电合成策略","authors":"T. A. M. Torlaema, Nur Farhana Jaafar, A. A. A. Mutalib, A. H. Lahuri","doi":"10.1002/jccs.70014","DOIUrl":null,"url":null,"abstract":"<p>The electrogeneration of SnO using an environmentally friendly approach was assessed by utilizing three different electrolytes: N,N-dimethylformamide (DMF), plant extract (PE), and a combination of PE with a deep eutectic solvent (PE-DES). The catalysts were characterized through FTIR, XRD, BET surface area analysis, and UV–Vis DRS to determine their structural and optical properties. The photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) was then evaluated for each catalyst under visible light exposure. At pH 3, SnO-PE-DES exhibited the highest degradation rate of 99.22%, making it the most efficient catalyst. SnO-DMF showed a degradation efficiency of 93.81%, while commercial SnO achieved 86.60%. The degradation efficiency of SnO-PE alone was only 23.46%, but incorporating DES significantly improved its performance. This enhancement is attributed to DES's ability to promote a more organized SnO structure, increasing the surface area and improving interactions with 2,4-DCP molecules. Due to its environmentally friendly synthesis and outstanding photocatalytic activity, SnO-PE-DES was selected for further optimization studies. This catalyst demonstrates great potential for photocatalytic applications in wastewater treatment. Its impressive performance under visible light, coupled with its eco-friendly synthesis, makes it a promising candidate for large-scale environmental remediation projects powered by solar energy.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 5","pages":"498-512"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green electrosynthesis strategies of SnO catalysts for enhanced photodegradation of 2,4-dichlorophenol\",\"authors\":\"T. A. M. Torlaema, Nur Farhana Jaafar, A. A. A. Mutalib, A. H. Lahuri\",\"doi\":\"10.1002/jccs.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrogeneration of SnO using an environmentally friendly approach was assessed by utilizing three different electrolytes: N,N-dimethylformamide (DMF), plant extract (PE), and a combination of PE with a deep eutectic solvent (PE-DES). The catalysts were characterized through FTIR, XRD, BET surface area analysis, and UV–Vis DRS to determine their structural and optical properties. The photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) was then evaluated for each catalyst under visible light exposure. At pH 3, SnO-PE-DES exhibited the highest degradation rate of 99.22%, making it the most efficient catalyst. SnO-DMF showed a degradation efficiency of 93.81%, while commercial SnO achieved 86.60%. The degradation efficiency of SnO-PE alone was only 23.46%, but incorporating DES significantly improved its performance. This enhancement is attributed to DES's ability to promote a more organized SnO structure, increasing the surface area and improving interactions with 2,4-DCP molecules. Due to its environmentally friendly synthesis and outstanding photocatalytic activity, SnO-PE-DES was selected for further optimization studies. This catalyst demonstrates great potential for photocatalytic applications in wastewater treatment. Its impressive performance under visible light, coupled with its eco-friendly synthesis, makes it a promising candidate for large-scale environmental remediation projects powered by solar energy.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"72 5\",\"pages\":\"498-512\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70014\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70014","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Green electrosynthesis strategies of SnO catalysts for enhanced photodegradation of 2,4-dichlorophenol
The electrogeneration of SnO using an environmentally friendly approach was assessed by utilizing three different electrolytes: N,N-dimethylformamide (DMF), plant extract (PE), and a combination of PE with a deep eutectic solvent (PE-DES). The catalysts were characterized through FTIR, XRD, BET surface area analysis, and UV–Vis DRS to determine their structural and optical properties. The photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) was then evaluated for each catalyst under visible light exposure. At pH 3, SnO-PE-DES exhibited the highest degradation rate of 99.22%, making it the most efficient catalyst. SnO-DMF showed a degradation efficiency of 93.81%, while commercial SnO achieved 86.60%. The degradation efficiency of SnO-PE alone was only 23.46%, but incorporating DES significantly improved its performance. This enhancement is attributed to DES's ability to promote a more organized SnO structure, increasing the surface area and improving interactions with 2,4-DCP molecules. Due to its environmentally friendly synthesis and outstanding photocatalytic activity, SnO-PE-DES was selected for further optimization studies. This catalyst demonstrates great potential for photocatalytic applications in wastewater treatment. Its impressive performance under visible light, coupled with its eco-friendly synthesis, makes it a promising candidate for large-scale environmental remediation projects powered by solar energy.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.