随机3-流形没有完全测地线子流形

IF 0.6 3区 数学 Q3 MATHEMATICS
Hasan M. El-Hasan, Frederick Wilhelm
{"title":"随机3-流形没有完全测地线子流形","authors":"Hasan M. El-Hasan,&nbsp;Frederick Wilhelm","doi":"10.1007/s10455-025-09998-9","DOIUrl":null,"url":null,"abstract":"<div><p>Murphy and the second author showed that a generic closed Riemannian manifold has no totally geodesic submanifolds, provided the ambient space is at least four dimensional. Lytchak and Petrunin established a similar result in dimension 3. For the higher dimensional result, the “generic set” is open and dense in the <span>\\(C^{q}\\)</span>–topology for any <span>\\(q\\ge 2.\\)</span> In Lytchak and Petrunin’s work, the “generic set” is a dense <span>\\(G_{\\delta }\\)</span> in the <span>\\(C^{q}\\)</span>–topology for any <span>\\(q\\ge 2.\\)</span> Here we show that the set of such metrics on a compact 3–manifold actually contains a set that is that is open and dense set in the <span>\\(C^{q}\\)</span>–topology, provided <span>\\(q\\ge 3.\\)</span></p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09998-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Random 3-manifolds have no totally geodesic submanifolds\",\"authors\":\"Hasan M. El-Hasan,&nbsp;Frederick Wilhelm\",\"doi\":\"10.1007/s10455-025-09998-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Murphy and the second author showed that a generic closed Riemannian manifold has no totally geodesic submanifolds, provided the ambient space is at least four dimensional. Lytchak and Petrunin established a similar result in dimension 3. For the higher dimensional result, the “generic set” is open and dense in the <span>\\\\(C^{q}\\\\)</span>–topology for any <span>\\\\(q\\\\ge 2.\\\\)</span> In Lytchak and Petrunin’s work, the “generic set” is a dense <span>\\\\(G_{\\\\delta }\\\\)</span> in the <span>\\\\(C^{q}\\\\)</span>–topology for any <span>\\\\(q\\\\ge 2.\\\\)</span> Here we show that the set of such metrics on a compact 3–manifold actually contains a set that is that is open and dense set in the <span>\\\\(C^{q}\\\\)</span>–topology, provided <span>\\\\(q\\\\ge 3.\\\\)</span></p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-09998-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-09998-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09998-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Murphy和第二作者证明了一般闭黎曼流形没有完全测地线子流形,只要环境空间至少是四维的。Lytchak和Petrunin在维度3中建立了类似的结果。对于高维结果,“泛型集”在\(C^{q}\) -拓扑中对于任何\(q\ge 2.\)都是开放和密集的。在Lytchak和Petrunin的工作中,“泛型集”在\(C^{q}\) -拓扑中对于任何\(q\ge 2.\)都是密集的\(G_{\delta }\)。这里我们展示了紧化3流形上的这些度量的集合实际上包含了一个在\(C^{q}\) -拓扑中开放和密集的集合 \(q\ge 3.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random 3-manifolds have no totally geodesic submanifolds

Murphy and the second author showed that a generic closed Riemannian manifold has no totally geodesic submanifolds, provided the ambient space is at least four dimensional. Lytchak and Petrunin established a similar result in dimension 3. For the higher dimensional result, the “generic set” is open and dense in the \(C^{q}\)–topology for any \(q\ge 2.\) In Lytchak and Petrunin’s work, the “generic set” is a dense \(G_{\delta }\) in the \(C^{q}\)–topology for any \(q\ge 2.\) Here we show that the set of such metrics on a compact 3–manifold actually contains a set that is that is open and dense set in the \(C^{q}\)–topology, provided \(q\ge 3.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信