磁偶极子对杂化纳米流体产生和吸收热量的影响

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-05-15 DOI:10.1007/s12043-025-02917-4
R S Varun Kumar, K Chandan, K Venkadeshwaran, Taseer Muhammad, R J Punith Gowda, B C Prasannakumara
{"title":"磁偶极子对杂化纳米流体产生和吸收热量的影响","authors":"R S Varun Kumar,&nbsp;K Chandan,&nbsp;K Venkadeshwaran,&nbsp;Taseer Muhammad,&nbsp;R J Punith Gowda,&nbsp;B C Prasannakumara","doi":"10.1007/s12043-025-02917-4","DOIUrl":null,"url":null,"abstract":"<div><p>The present study examines the impact of heat source/sink, magnetic dipole and heterogeneous–homogeneous chemical reactions on the hybrid nanofluid flow via a stretching cylinder in the presence of porous media. Scientists and engineers can enhance the efficiency of heat transfer by optimising system flow and investigating the impact of chemical reactions on flow dynamics. Many chemical engineering activities, including absorption, leaching, drying, adsorption, evaporation and solvent extraction, can be used in the analysis of mass transfer to or from surfaces. The governing partial differential equations (PDEs) are modelled and presented. The use of similarity variables transforms the modelled PDEs of the present problem into non-dimensional ordinary differential equations (ODEs). The resultant ordinary differential equations (ODEs) are solved using the Runge–Kutta–Fehlberg fourth–fifth order (RKF-45) method and the obtained results are compared using the physics-informed neural network (PINN) approach. Graphical representations illustrate the effects of various parameters on temperature, concentration and velocity profiles. The thermal profile increases as the ferromagnetic interaction and heat source/sink parameters increase. As homogeneous and heterogeneous reaction parameters rise, the concentration profile decreases. The outcomes obtained by PINN are in good agreement with the solution obtained by RKF-45, indicating good convergence. \n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of magnetic dipole on the hybrid nanofluid flow with chemical reactions due to the generated and absorbed heat\",\"authors\":\"R S Varun Kumar,&nbsp;K Chandan,&nbsp;K Venkadeshwaran,&nbsp;Taseer Muhammad,&nbsp;R J Punith Gowda,&nbsp;B C Prasannakumara\",\"doi\":\"10.1007/s12043-025-02917-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study examines the impact of heat source/sink, magnetic dipole and heterogeneous–homogeneous chemical reactions on the hybrid nanofluid flow via a stretching cylinder in the presence of porous media. Scientists and engineers can enhance the efficiency of heat transfer by optimising system flow and investigating the impact of chemical reactions on flow dynamics. Many chemical engineering activities, including absorption, leaching, drying, adsorption, evaporation and solvent extraction, can be used in the analysis of mass transfer to or from surfaces. The governing partial differential equations (PDEs) are modelled and presented. The use of similarity variables transforms the modelled PDEs of the present problem into non-dimensional ordinary differential equations (ODEs). The resultant ordinary differential equations (ODEs) are solved using the Runge–Kutta–Fehlberg fourth–fifth order (RKF-45) method and the obtained results are compared using the physics-informed neural network (PINN) approach. Graphical representations illustrate the effects of various parameters on temperature, concentration and velocity profiles. The thermal profile increases as the ferromagnetic interaction and heat source/sink parameters increase. As homogeneous and heterogeneous reaction parameters rise, the concentration profile decreases. The outcomes obtained by PINN are in good agreement with the solution obtained by RKF-45, indicating good convergence. \\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"99 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-025-02917-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02917-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了热源/热源、磁偶极子和非均相化学反应对多孔介质存在下混合纳米流体通过拉伸圆柱体流动的影响。科学家和工程师可以通过优化系统流动和研究化学反应对流动动力学的影响来提高传热效率。许多化学工程活动,包括吸收、浸出、干燥、吸附、蒸发和溶剂萃取,都可以用于表面传质或表面传质的分析。对控制偏微分方程(PDEs)进行了建模和推导。相似变量的使用将本问题的偏微分方程模型转化为无量纲常微分方程。利用Runge-Kutta-Fehlberg四五阶(RKF-45)方法求解得到的常微分方程(ODEs),并利用物理信息神经网络(PINN)方法对得到的结果进行比较。图形表示说明了各种参数对温度、浓度和速度分布的影响。热剖面随着铁磁相互作用和热源/汇参数的增大而增大。随着均相和非均相反应参数的升高,浓度曲线减小。PINN的求解结果与RKF-45的求解结果吻合较好,具有较好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of magnetic dipole on the hybrid nanofluid flow with chemical reactions due to the generated and absorbed heat

The present study examines the impact of heat source/sink, magnetic dipole and heterogeneous–homogeneous chemical reactions on the hybrid nanofluid flow via a stretching cylinder in the presence of porous media. Scientists and engineers can enhance the efficiency of heat transfer by optimising system flow and investigating the impact of chemical reactions on flow dynamics. Many chemical engineering activities, including absorption, leaching, drying, adsorption, evaporation and solvent extraction, can be used in the analysis of mass transfer to or from surfaces. The governing partial differential equations (PDEs) are modelled and presented. The use of similarity variables transforms the modelled PDEs of the present problem into non-dimensional ordinary differential equations (ODEs). The resultant ordinary differential equations (ODEs) are solved using the Runge–Kutta–Fehlberg fourth–fifth order (RKF-45) method and the obtained results are compared using the physics-informed neural network (PINN) approach. Graphical representations illustrate the effects of various parameters on temperature, concentration and velocity profiles. The thermal profile increases as the ferromagnetic interaction and heat source/sink parameters increase. As homogeneous and heterogeneous reaction parameters rise, the concentration profile decreases. The outcomes obtained by PINN are in good agreement with the solution obtained by RKF-45, indicating good convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信