{"title":"从遗传学到功能:ABCA12在自闭症神经生物学中的作用","authors":"Akansha Pal, Falguni Goel, Vipin Kumar Garg","doi":"10.1007/s12031-025-02357-0","DOIUrl":null,"url":null,"abstract":"<div><p>ASD is a complex neurodevelopmental disorder with genetic, environmental, and molecular roots. Among the thousands of genes that have been associated with ASD, one critical factor has emerged as ABCA12, which plays an important role in lipid transport and metabolism. Traditionally, it has been related to skin disorders but has only recently been implicated in broader brain development and function. Some of the implicated effects include dysregulated lipid homeostasis, neuroinflammation, oxidative stress, and abnormalities in synaptic when the ABCA12 system is dysregulated. All the above processes are related to pathology in ASD. In this review, the emerging function of ABCA12 in autism neurobiology has been discussed; the core base is derived from in vivo models and preclinical studies. In vivo models such as mice and zebrafish that, in the previous studies had earlier shown impairments of ABCA12 which results in social deficiency behaviors but also perform repetitive actions. Based on the effects of the gene on molecular pathways, including neuronal signalling and membrane integrity, and identifying therapeutic approaches targeting ABCA12 or its downstream effects, preclinical studies have contributed to the integration of genetic, functional, and therapeutic perspectives for understanding the contribution of ABCA12 to ASD. These findings may unlock further investigations geared toward unravelling how lipid metabolism intricately influences neurodevelopment with regards to interventions available for use in ASD.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Genetics to Function: the Role of ABCA12 in Autism Neurobiology\",\"authors\":\"Akansha Pal, Falguni Goel, Vipin Kumar Garg\",\"doi\":\"10.1007/s12031-025-02357-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ASD is a complex neurodevelopmental disorder with genetic, environmental, and molecular roots. Among the thousands of genes that have been associated with ASD, one critical factor has emerged as ABCA12, which plays an important role in lipid transport and metabolism. Traditionally, it has been related to skin disorders but has only recently been implicated in broader brain development and function. Some of the implicated effects include dysregulated lipid homeostasis, neuroinflammation, oxidative stress, and abnormalities in synaptic when the ABCA12 system is dysregulated. All the above processes are related to pathology in ASD. In this review, the emerging function of ABCA12 in autism neurobiology has been discussed; the core base is derived from in vivo models and preclinical studies. In vivo models such as mice and zebrafish that, in the previous studies had earlier shown impairments of ABCA12 which results in social deficiency behaviors but also perform repetitive actions. Based on the effects of the gene on molecular pathways, including neuronal signalling and membrane integrity, and identifying therapeutic approaches targeting ABCA12 or its downstream effects, preclinical studies have contributed to the integration of genetic, functional, and therapeutic perspectives for understanding the contribution of ABCA12 to ASD. These findings may unlock further investigations geared toward unravelling how lipid metabolism intricately influences neurodevelopment with regards to interventions available for use in ASD.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"75 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-025-02357-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02357-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
From Genetics to Function: the Role of ABCA12 in Autism Neurobiology
ASD is a complex neurodevelopmental disorder with genetic, environmental, and molecular roots. Among the thousands of genes that have been associated with ASD, one critical factor has emerged as ABCA12, which plays an important role in lipid transport and metabolism. Traditionally, it has been related to skin disorders but has only recently been implicated in broader brain development and function. Some of the implicated effects include dysregulated lipid homeostasis, neuroinflammation, oxidative stress, and abnormalities in synaptic when the ABCA12 system is dysregulated. All the above processes are related to pathology in ASD. In this review, the emerging function of ABCA12 in autism neurobiology has been discussed; the core base is derived from in vivo models and preclinical studies. In vivo models such as mice and zebrafish that, in the previous studies had earlier shown impairments of ABCA12 which results in social deficiency behaviors but also perform repetitive actions. Based on the effects of the gene on molecular pathways, including neuronal signalling and membrane integrity, and identifying therapeutic approaches targeting ABCA12 or its downstream effects, preclinical studies have contributed to the integration of genetic, functional, and therapeutic perspectives for understanding the contribution of ABCA12 to ASD. These findings may unlock further investigations geared toward unravelling how lipid metabolism intricately influences neurodevelopment with regards to interventions available for use in ASD.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.