利用非食用能源植物的植物修复能力进行Cr6+修复和绿色能源展望

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Ankita Das, Soumya Ranjan Patra, Nabin Kumar Dhal
{"title":"利用非食用能源植物的植物修复能力进行Cr6+修复和绿色能源展望","authors":"Ankita Das,&nbsp;Soumya Ranjan Patra,&nbsp;Nabin Kumar Dhal","doi":"10.1007/s10661-025-14094-3","DOIUrl":null,"url":null,"abstract":"<div><p>Hexavalent chromium (Cr<sup>6+</sup>) pollution is a significant environmental and health risk. Phytoremediation, using green plants as solar-powered bioreactors, offers a sustainable reclamation method. However, managing the biomass generated post-remediation remains a challenge. To address this, bioenergy crops, known for their high biomass and biofuel potential, are increasingly used in phytoremediation. This research evaluates 13 non-edible bioenergy crops for their Cr<sup>6+</sup> remediation efficacy, mechanisms, and post-remediation biomass management. These crops, including Jatropha curcas, Pongamia pinnata, and Ricinus communis, produce biodiesel from seeds, while others like Salix viminalis and Arundo donax yield bioethanol from biomass. Biodiesel yields from <i>J. curcas</i>, <i>P. pinnata</i>, <i>M. ferrea</i>, <i>R. communis</i>, <i>E. camaldulensis</i>, <i>C. flexuosus</i>, and <i>J. gossypiifolia</i> range from 23.9% to 75%. Bioethanol yields from <i>S. viminalis</i>, <i>A. donax</i>, <i>T. domingensis</i>, <i>T. angustifolia</i>, and <i>T. latifolia</i> vary from 3.19 to 51 g/L. These plants demonstrate significant Cr<sup>6+</sup> uptake and detoxification through phytoremediation mechanisms such as phytoextraction, rhizofiltration, and phytostabilization, offering an eco-friendly alternative to conventional methods. Simultaneously, their biomass serves as feedstock for biodiesel, bioethanol, and bio-oil production, contributing to renewable energy systems. This synergy reduces risks of secondary pollution and aligns with global sustainability goals. The study emphasizes optimizing biomass conversion techniques, managing post-remediation residues, and leveraging genetic engineering to enhance plant efficacy. Future directions include scaling integrated phytoremediation-bioenergy systems and evaluating environmental, economic, and social impacts through life cycle assessments.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing phytoremediation capabilities of nonedible energy plants for Cr6+ remediation and green energy perspectives: a review\",\"authors\":\"Ankita Das,&nbsp;Soumya Ranjan Patra,&nbsp;Nabin Kumar Dhal\",\"doi\":\"10.1007/s10661-025-14094-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hexavalent chromium (Cr<sup>6+</sup>) pollution is a significant environmental and health risk. Phytoremediation, using green plants as solar-powered bioreactors, offers a sustainable reclamation method. However, managing the biomass generated post-remediation remains a challenge. To address this, bioenergy crops, known for their high biomass and biofuel potential, are increasingly used in phytoremediation. This research evaluates 13 non-edible bioenergy crops for their Cr<sup>6+</sup> remediation efficacy, mechanisms, and post-remediation biomass management. These crops, including Jatropha curcas, Pongamia pinnata, and Ricinus communis, produce biodiesel from seeds, while others like Salix viminalis and Arundo donax yield bioethanol from biomass. Biodiesel yields from <i>J. curcas</i>, <i>P. pinnata</i>, <i>M. ferrea</i>, <i>R. communis</i>, <i>E. camaldulensis</i>, <i>C. flexuosus</i>, and <i>J. gossypiifolia</i> range from 23.9% to 75%. Bioethanol yields from <i>S. viminalis</i>, <i>A. donax</i>, <i>T. domingensis</i>, <i>T. angustifolia</i>, and <i>T. latifolia</i> vary from 3.19 to 51 g/L. These plants demonstrate significant Cr<sup>6+</sup> uptake and detoxification through phytoremediation mechanisms such as phytoextraction, rhizofiltration, and phytostabilization, offering an eco-friendly alternative to conventional methods. Simultaneously, their biomass serves as feedstock for biodiesel, bioethanol, and bio-oil production, contributing to renewable energy systems. This synergy reduces risks of secondary pollution and aligns with global sustainability goals. The study emphasizes optimizing biomass conversion techniques, managing post-remediation residues, and leveraging genetic engineering to enhance plant efficacy. Future directions include scaling integrated phytoremediation-bioenergy systems and evaluating environmental, economic, and social impacts through life cycle assessments.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-14094-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-14094-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

六价铬(Cr6+)污染是重大的环境和健康风险。植物修复,利用绿色植物作为太阳能生物反应器,提供了一种可持续的回收方法。然而,管理修复后产生的生物质仍然是一个挑战。为了解决这个问题,以其高生物量和生物燃料潜力而闻名的生物能源作物越来越多地用于植物修复。本研究对13种非食用生物能源作物的Cr6+修复效果、机制及修复后生物量管理进行了评价。这些作物,包括麻疯树、凤尾草和蓖麻,从种子中生产生物柴油,而其他作物,如柳和芦竹,从生物质中生产生物乙醇。麻瓜、山楂、铁蒺藜、红豆、山梨树、弯叶和棉叶的生物柴油产率在23.9% ~ 75%之间。山茱萸、唐菖蒲、山茱萸、山茱萸和山茱萸的生物乙醇产量从3.19到51 g/L不等。这些植物通过植物提取、根茎过滤和植物稳定等植物修复机制表现出显著的Cr6+吸收和解毒能力,为传统方法提供了一种生态友好的替代方案。同时,它们的生物质还可以作为生物柴油、生物乙醇和生物油生产的原料,为可再生能源系统做出贡献。这种协同作用降低了二次污染的风险,并与全球可持续发展目标保持一致。该研究强调优化生物质转化技术,管理修复后残留物,以及利用基因工程来提高植物效率。未来的发展方向包括扩大植物修复-生物能源综合系统的规模,并通过生命周期评估来评估环境、经济和社会影响。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing phytoremediation capabilities of nonedible energy plants for Cr6+ remediation and green energy perspectives: a review

Hexavalent chromium (Cr6+) pollution is a significant environmental and health risk. Phytoremediation, using green plants as solar-powered bioreactors, offers a sustainable reclamation method. However, managing the biomass generated post-remediation remains a challenge. To address this, bioenergy crops, known for their high biomass and biofuel potential, are increasingly used in phytoremediation. This research evaluates 13 non-edible bioenergy crops for their Cr6+ remediation efficacy, mechanisms, and post-remediation biomass management. These crops, including Jatropha curcas, Pongamia pinnata, and Ricinus communis, produce biodiesel from seeds, while others like Salix viminalis and Arundo donax yield bioethanol from biomass. Biodiesel yields from J. curcas, P. pinnata, M. ferrea, R. communis, E. camaldulensis, C. flexuosus, and J. gossypiifolia range from 23.9% to 75%. Bioethanol yields from S. viminalis, A. donax, T. domingensis, T. angustifolia, and T. latifolia vary from 3.19 to 51 g/L. These plants demonstrate significant Cr6+ uptake and detoxification through phytoremediation mechanisms such as phytoextraction, rhizofiltration, and phytostabilization, offering an eco-friendly alternative to conventional methods. Simultaneously, their biomass serves as feedstock for biodiesel, bioethanol, and bio-oil production, contributing to renewable energy systems. This synergy reduces risks of secondary pollution and aligns with global sustainability goals. The study emphasizes optimizing biomass conversion techniques, managing post-remediation residues, and leveraging genetic engineering to enhance plant efficacy. Future directions include scaling integrated phytoremediation-bioenergy systems and evaluating environmental, economic, and social impacts through life cycle assessments.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信