一维孤立重力水波的横向线性稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Frédéric Rousset, Changzhen Sun
{"title":"一维孤立重力水波的横向线性稳定性","authors":"Frédéric Rousset,&nbsp;Changzhen Sun","doi":"10.1007/s00205-025-02101-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish the transverse linear asymptotic stability of one-dimensional small-amplitude solitary waves of the gravity water-waves system. More precisely, we show that the semigroup of the linearized operator about the solitary wave decays exponentially within a spectral subspace supplementary to the space generated by the spectral projection on continuous resonant modes. The key element of the proof is to establish suitable uniform resolvent estimates. To achieve this, we use different arguments depending on the size of the transverse frequencies. For high transverse frequencies, we use reductions based on pseudodifferential calculus, for intermediate ones, we use an energy-based approach relying on the design of various appropriate energy functionals for different regimes of longitudinal frequencies and for low frequencies, we use the KP-II approximation. As a corollary of our main result, we also get the spectral stability in the unweighted energy space.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse Linear Stability of One-Dimensional Solitary Gravity Water Waves\",\"authors\":\"Frédéric Rousset,&nbsp;Changzhen Sun\",\"doi\":\"10.1007/s00205-025-02101-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish the transverse linear asymptotic stability of one-dimensional small-amplitude solitary waves of the gravity water-waves system. More precisely, we show that the semigroup of the linearized operator about the solitary wave decays exponentially within a spectral subspace supplementary to the space generated by the spectral projection on continuous resonant modes. The key element of the proof is to establish suitable uniform resolvent estimates. To achieve this, we use different arguments depending on the size of the transverse frequencies. For high transverse frequencies, we use reductions based on pseudodifferential calculus, for intermediate ones, we use an energy-based approach relying on the design of various appropriate energy functionals for different regimes of longitudinal frequencies and for low frequencies, we use the KP-II approximation. As a corollary of our main result, we also get the spectral stability in the unweighted energy space.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02101-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02101-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了重力水波系统的一维小振幅孤立波的横向线性渐近稳定性。更确切地说,我们证明了孤波的线性化算子的半群在连续共振模式上的谱投影所产生的空间的补充谱子空间内呈指数衰减。证明的关键要素是建立合适的统一的解决方案估计。为了实现这一点,我们根据横向频率的大小使用不同的参数。对于高横向频率,我们使用基于伪微分演算的约简,对于中间频率,我们使用基于能量的方法,依赖于不同纵向频率的各种适当能量泛函的设计,对于低频,我们使用KP-II近似。作为主要结果的一个推论,我们还得到了非加权能量空间中的谱稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse Linear Stability of One-Dimensional Solitary Gravity Water Waves

In this paper, we establish the transverse linear asymptotic stability of one-dimensional small-amplitude solitary waves of the gravity water-waves system. More precisely, we show that the semigroup of the linearized operator about the solitary wave decays exponentially within a spectral subspace supplementary to the space generated by the spectral projection on continuous resonant modes. The key element of the proof is to establish suitable uniform resolvent estimates. To achieve this, we use different arguments depending on the size of the transverse frequencies. For high transverse frequencies, we use reductions based on pseudodifferential calculus, for intermediate ones, we use an energy-based approach relying on the design of various appropriate energy functionals for different regimes of longitudinal frequencies and for low frequencies, we use the KP-II approximation. As a corollary of our main result, we also get the spectral stability in the unweighted energy space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信