{"title":"鲁棒联邦学习的研究进展:考虑异质性的综述","authors":"Chuan Chen;Tianchi Liao;Xiaojun Deng;Zihou Wu;Sheng Huang;Zibin Zheng","doi":"10.1109/TBDATA.2025.3527202","DOIUrl":null,"url":null,"abstract":"In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources. This diversity leads to significant heterogeneity, which increases the complexity of model training. In this paper, we first outline the basic concepts of heterogeneous FL and summarize the research challenges in FL in terms of five aspects: data, model, task, device and communication. In addition, we explore how existing state-of-the-art approaches cope with the heterogeneity of FL, and categorize and review these approaches at three different levels: data-level, model-level, and architecture-level. Subsequently, the paper extensively discusses privacy-preserving strategies in heterogeneous FL environments. Finally, the paper discusses current open issues and directions for future research, aiming to promote the further development of heterogeneous FL.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1548-1567"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Robust Federated Learning: A Survey With Heterogeneity Considerations\",\"authors\":\"Chuan Chen;Tianchi Liao;Xiaojun Deng;Zihou Wu;Sheng Huang;Zibin Zheng\",\"doi\":\"10.1109/TBDATA.2025.3527202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources. This diversity leads to significant heterogeneity, which increases the complexity of model training. In this paper, we first outline the basic concepts of heterogeneous FL and summarize the research challenges in FL in terms of five aspects: data, model, task, device and communication. In addition, we explore how existing state-of-the-art approaches cope with the heterogeneity of FL, and categorize and review these approaches at three different levels: data-level, model-level, and architecture-level. Subsequently, the paper extensively discusses privacy-preserving strategies in heterogeneous FL environments. Finally, the paper discusses current open issues and directions for future research, aiming to promote the further development of heterogeneous FL.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"1548-1567\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833754/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833754/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Advances in Robust Federated Learning: A Survey With Heterogeneity Considerations
In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources. This diversity leads to significant heterogeneity, which increases the complexity of model training. In this paper, we first outline the basic concepts of heterogeneous FL and summarize the research challenges in FL in terms of five aspects: data, model, task, device and communication. In addition, we explore how existing state-of-the-art approaches cope with the heterogeneity of FL, and categorize and review these approaches at three different levels: data-level, model-level, and architecture-level. Subsequently, the paper extensively discusses privacy-preserving strategies in heterogeneous FL environments. Finally, the paper discusses current open issues and directions for future research, aiming to promote the further development of heterogeneous FL.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.