{"title":"下一步在哪里?预测科研生涯的科学影响","authors":"Hefu Zhang;Yong Ge;Yan Zhuang;Enhong Chen","doi":"10.1109/TBDATA.2024.3442550","DOIUrl":null,"url":null,"abstract":"Predicting the scientific impact of research scholars is increasingly crucial for career planning, particularly for young scholars considering career transitions. However, predicting a scholar's future development, especially after they move to a different academic group, presents significant challenges. To tackle this issue, we propose a Future Publication Impact Prediction Network (FPIPN) based on graph neural networks. FPIPN leverages rich information from a heterogeneous academic graph for impact prediction. We employ a hierarchical attention mechanism to learn the significance of graph information and utilize a knowledge distillation strategy to assess future impact based on historical records. Extensive experiments on a real-world academic dataset showcase the effectiveness of our approach compared to state-of-the-art methods.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1116-1127"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Where is the Next Step? Predicting the Scientific Impact of Research Career\",\"authors\":\"Hefu Zhang;Yong Ge;Yan Zhuang;Enhong Chen\",\"doi\":\"10.1109/TBDATA.2024.3442550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the scientific impact of research scholars is increasingly crucial for career planning, particularly for young scholars considering career transitions. However, predicting a scholar's future development, especially after they move to a different academic group, presents significant challenges. To tackle this issue, we propose a Future Publication Impact Prediction Network (FPIPN) based on graph neural networks. FPIPN leverages rich information from a heterogeneous academic graph for impact prediction. We employ a hierarchical attention mechanism to learn the significance of graph information and utilize a knowledge distillation strategy to assess future impact based on historical records. Extensive experiments on a real-world academic dataset showcase the effectiveness of our approach compared to state-of-the-art methods.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"1116-1127\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634821/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634821/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Where is the Next Step? Predicting the Scientific Impact of Research Career
Predicting the scientific impact of research scholars is increasingly crucial for career planning, particularly for young scholars considering career transitions. However, predicting a scholar's future development, especially after they move to a different academic group, presents significant challenges. To tackle this issue, we propose a Future Publication Impact Prediction Network (FPIPN) based on graph neural networks. FPIPN leverages rich information from a heterogeneous academic graph for impact prediction. We employ a hierarchical attention mechanism to learn the significance of graph information and utilize a knowledge distillation strategy to assess future impact based on historical records. Extensive experiments on a real-world academic dataset showcase the effectiveness of our approach compared to state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.