使用迁移学习在可承受的情境中生成虚假评论

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Luis Ibañez-Lissen;Lorena González-Manzano;José M. de Fuentes;Manuel Goyanes
{"title":"使用迁移学习在可承受的情境中生成虚假评论","authors":"Luis Ibañez-Lissen;Lorena González-Manzano;José M. de Fuentes;Manuel Goyanes","doi":"10.1109/TBDATA.2025.3536927","DOIUrl":null,"url":null,"abstract":"Fake content is a noteworthy threat which is managed by assorted means. This is a serious problem for online shopping platforms whose products can be affected by negative or positive reviews. Artificial intelligence is commonly applied for fake review generation, being transfer learning a promising approach to reduce training requirements. However, the feasibility of generating in-context fake reviews using transfer learning has not been explored yet. This paper analyses the suitability of a couple of transformers (T5 and BART) to generate realistic in-context fake reviews. Results show that 1) the diversity of generated reviews is comparable to existing works; 2) human-based detection is close to random; 3) just reviews generated with one of the used transformers can be detected with 38% precision; and 1 h of training and 8 k real reviews are needed to produce realistic fake reviews.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"976-987"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858443","citationCount":"0","resultStr":"{\"title\":\"Use of Transfer Learning for Affordable In-Context Fake Review Generation\",\"authors\":\"Luis Ibañez-Lissen;Lorena González-Manzano;José M. de Fuentes;Manuel Goyanes\",\"doi\":\"10.1109/TBDATA.2025.3536927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake content is a noteworthy threat which is managed by assorted means. This is a serious problem for online shopping platforms whose products can be affected by negative or positive reviews. Artificial intelligence is commonly applied for fake review generation, being transfer learning a promising approach to reduce training requirements. However, the feasibility of generating in-context fake reviews using transfer learning has not been explored yet. This paper analyses the suitability of a couple of transformers (T5 and BART) to generate realistic in-context fake reviews. Results show that 1) the diversity of generated reviews is comparable to existing works; 2) human-based detection is close to random; 3) just reviews generated with one of the used transformers can be detected with 38% precision; and 1 h of training and 8 k real reviews are needed to produce realistic fake reviews.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"976-987\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858443\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858443/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858443/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

虚假内容是一个值得注意的威胁,通过各种手段进行管理。对于那些产品可能受到负面或正面评论影响的网购平台来说,这是一个严重的问题。人工智能通常应用于虚假评论生成,迁移学习是一种很有前途的减少培训需求的方法。然而,使用迁移学习生成上下文假评论的可行性尚未得到探讨。本文分析了一对变压器(T5和BART)的适用性,以产生真实的情境假评论。结果表明:1)生成的评论的多样性与现有作品相当;2)基于人的检测接近随机;3)仅使用其中一台变压器产生的评审,检测精度可达38%;需要1小时的训练和8千次真实的评论才能产生真实的假评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Transfer Learning for Affordable In-Context Fake Review Generation
Fake content is a noteworthy threat which is managed by assorted means. This is a serious problem for online shopping platforms whose products can be affected by negative or positive reviews. Artificial intelligence is commonly applied for fake review generation, being transfer learning a promising approach to reduce training requirements. However, the feasibility of generating in-context fake reviews using transfer learning has not been explored yet. This paper analyses the suitability of a couple of transformers (T5 and BART) to generate realistic in-context fake reviews. Results show that 1) the diversity of generated reviews is comparable to existing works; 2) human-based detection is close to random; 3) just reviews generated with one of the used transformers can be detected with 38% precision; and 1 h of training and 8 k real reviews are needed to produce realistic fake reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信