{"title":"基于轻量级矢量量化生成对抗网络的地形场景生成","authors":"Yan Wang;Huiyu Zhou;Xinghui Dong","doi":"10.1109/TBDATA.2025.3536926","DOIUrl":null,"url":null,"abstract":"Natural terrain scene images play important roles in the geographical research and application. However, it is challenging to collect a large set of terrain scene images. Recently, great progress has been made in image generation. Although impressive results can be achieved, the efficiency of the state-of-the-art methods, e.g., the Vector Quantized Generative Adversarial Network (VQGAN), is still dissatisfying. The VQGAN confronts two issues, i.e., high space complexity and heavy computational demand. To efficiently fulfill the terrain scene generation task, we first collect a Natural Terrain Scene Data Set (NTSD), which contains 36,672 images divided into 38 classes. Then we propose a Lightweight VQGAN (Lit-VQGAN), which uses the fewer parameters and has the lower computational complexity, compared with the VQGAN. A lightweight super-resolution network is further adopted, to speedily derive a high-resolution image from the image that the Lit-VQGAN generates. The Lit-VQGAN can be trained and tested on the NTSD. To our knowledge, either the NTSD or the Lit-VQGAN has not been exploited before.<sup>1</sup> Experimental results show that the Lit-VQGAN is more efficient and effective than the VQGAN for the image generation task. These promising results should be due to the lightweight yet effective networks that we design.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"988-1000"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrain Scene Generation Using a Lightweight Vector Quantized Generative Adversarial Network\",\"authors\":\"Yan Wang;Huiyu Zhou;Xinghui Dong\",\"doi\":\"10.1109/TBDATA.2025.3536926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural terrain scene images play important roles in the geographical research and application. However, it is challenging to collect a large set of terrain scene images. Recently, great progress has been made in image generation. Although impressive results can be achieved, the efficiency of the state-of-the-art methods, e.g., the Vector Quantized Generative Adversarial Network (VQGAN), is still dissatisfying. The VQGAN confronts two issues, i.e., high space complexity and heavy computational demand. To efficiently fulfill the terrain scene generation task, we first collect a Natural Terrain Scene Data Set (NTSD), which contains 36,672 images divided into 38 classes. Then we propose a Lightweight VQGAN (Lit-VQGAN), which uses the fewer parameters and has the lower computational complexity, compared with the VQGAN. A lightweight super-resolution network is further adopted, to speedily derive a high-resolution image from the image that the Lit-VQGAN generates. The Lit-VQGAN can be trained and tested on the NTSD. To our knowledge, either the NTSD or the Lit-VQGAN has not been exploited before.<sup>1</sup> Experimental results show that the Lit-VQGAN is more efficient and effective than the VQGAN for the image generation task. These promising results should be due to the lightweight yet effective networks that we design.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"988-1000\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858453/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858453/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Terrain Scene Generation Using a Lightweight Vector Quantized Generative Adversarial Network
Natural terrain scene images play important roles in the geographical research and application. However, it is challenging to collect a large set of terrain scene images. Recently, great progress has been made in image generation. Although impressive results can be achieved, the efficiency of the state-of-the-art methods, e.g., the Vector Quantized Generative Adversarial Network (VQGAN), is still dissatisfying. The VQGAN confronts two issues, i.e., high space complexity and heavy computational demand. To efficiently fulfill the terrain scene generation task, we first collect a Natural Terrain Scene Data Set (NTSD), which contains 36,672 images divided into 38 classes. Then we propose a Lightweight VQGAN (Lit-VQGAN), which uses the fewer parameters and has the lower computational complexity, compared with the VQGAN. A lightweight super-resolution network is further adopted, to speedily derive a high-resolution image from the image that the Lit-VQGAN generates. The Lit-VQGAN can be trained and tested on the NTSD. To our knowledge, either the NTSD or the Lit-VQGAN has not been exploited before.1 Experimental results show that the Lit-VQGAN is more efficient and effective than the VQGAN for the image generation task. These promising results should be due to the lightweight yet effective networks that we design.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.