{"title":"AnesFormer:基于脑电图的麻醉状态分类的端到端框架","authors":"Qihang Wang;Ying Chen;Qinge Xiao","doi":"10.1109/TBDATA.2024.3489419","DOIUrl":null,"url":null,"abstract":"To determine the real-time changes in brain arousal introduced by anesthetics, Electroencephalogram (EEG) is often used as an objective neuroimaging evidence to link the neurobehavioral states of patients. However, EEG signals often suffer from a low signal-to-noise ratio due to environmental noise and artifacts, which limits its application for a reliable estimation of depth of anesthesia (DoA), especially under high cross-subject variability. In this study, we propose an end-to-end deep learning based framework, termed as AnesFormer, which contains a data selection model, a self-attention based classification model, and a baseline update mechanism. These three components are integrated in a dynamic and seamless manner to achieve the goal of improving the effectiveness and robustness of DoA estimation in a leave-one-out setting. In the experiment, we apply the proposed framework to an office-based dataset and a hospital-based dataset, and use seven existing models as benchmarks. In addition, we conduct an ablation experiment to show the significance of each component in AnesFormer. Our main results indicate that 1) the proposed framework generally performs better than the existing methods for DoA estimation in terms of effectiveness and robustness; 2) each designed component in AnesFormer is likely to contribute to the DoA classification improvement.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1357-1368"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AnesFormer: An End-to-End Framework for EEG-Based Anesthetic State Classification\",\"authors\":\"Qihang Wang;Ying Chen;Qinge Xiao\",\"doi\":\"10.1109/TBDATA.2024.3489419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To determine the real-time changes in brain arousal introduced by anesthetics, Electroencephalogram (EEG) is often used as an objective neuroimaging evidence to link the neurobehavioral states of patients. However, EEG signals often suffer from a low signal-to-noise ratio due to environmental noise and artifacts, which limits its application for a reliable estimation of depth of anesthesia (DoA), especially under high cross-subject variability. In this study, we propose an end-to-end deep learning based framework, termed as AnesFormer, which contains a data selection model, a self-attention based classification model, and a baseline update mechanism. These three components are integrated in a dynamic and seamless manner to achieve the goal of improving the effectiveness and robustness of DoA estimation in a leave-one-out setting. In the experiment, we apply the proposed framework to an office-based dataset and a hospital-based dataset, and use seven existing models as benchmarks. In addition, we conduct an ablation experiment to show the significance of each component in AnesFormer. Our main results indicate that 1) the proposed framework generally performs better than the existing methods for DoA estimation in terms of effectiveness and robustness; 2) each designed component in AnesFormer is likely to contribute to the DoA classification improvement.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"1357-1368\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740329/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740329/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
AnesFormer: An End-to-End Framework for EEG-Based Anesthetic State Classification
To determine the real-time changes in brain arousal introduced by anesthetics, Electroencephalogram (EEG) is often used as an objective neuroimaging evidence to link the neurobehavioral states of patients. However, EEG signals often suffer from a low signal-to-noise ratio due to environmental noise and artifacts, which limits its application for a reliable estimation of depth of anesthesia (DoA), especially under high cross-subject variability. In this study, we propose an end-to-end deep learning based framework, termed as AnesFormer, which contains a data selection model, a self-attention based classification model, and a baseline update mechanism. These three components are integrated in a dynamic and seamless manner to achieve the goal of improving the effectiveness and robustness of DoA estimation in a leave-one-out setting. In the experiment, we apply the proposed framework to an office-based dataset and a hospital-based dataset, and use seven existing models as benchmarks. In addition, we conduct an ablation experiment to show the significance of each component in AnesFormer. Our main results indicate that 1) the proposed framework generally performs better than the existing methods for DoA estimation in terms of effectiveness and robustness; 2) each designed component in AnesFormer is likely to contribute to the DoA classification improvement.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.