糖尿病视网膜病变分级和病灶分割的综合联邦学习框架

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingxin Mao;Xiaoyu Ma;Yanlong Bi;Rongqing Zhang
{"title":"糖尿病视网膜病变分级和病灶分割的综合联邦学习框架","authors":"Jingxin Mao;Xiaoyu Ma;Yanlong Bi;Rongqing Zhang","doi":"10.1109/TBDATA.2024.3442548","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a debilitating ocular complication demanding timely intervention and treatment. The rapid evolution of deep learning (DL) has notably enhanced the efficiency of conventional manual diagnosis. However, the scarcity of existing DR datasets hinders the progress of data-driven DL models, especially for pixel-level lesion annotation datasets, which severely impedes the advancement of DR lesion segmentation tasks required for precise interpretations of DR grading. Furthermore, the escalating concerns surrounding medical data security and privacy induce data collection challenges for traditional centralized learning, exacerbating the issue of data silos. Federated learning (FL) emerges as a privacy-preserving distributed learning paradigm. Nevertheless, the existing literature lacks a comprehensive FL framework for DR diagnosis and fails to exploit multiple diverse DR datasets simultaneously. To address the challenges of data scarcity and privacy, we construct a high-quality pixel-level DR lesion annotation dataset (TJDR) and propose a novel FL-based DR diagnosis framework including both DR grading and multi-lesion segmentation. Moreover, to tackle the scarcity of pixel-level DR lesion datasets, we propose <inline-formula><tex-math>$\\bm {\\alpha }$</tex-math></inline-formula>-Fed and adaptive-<inline-formula><tex-math>$\\bm {\\alpha }$</tex-math></inline-formula>-Fed, two efficient cross-dataset FL algorithms. Extensive experiments demonstrate the effectiveness of our proposed framework and the two cross-dataset FL algorithms.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1158-1170"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Federated Learning Framework for Diabetic Retinopathy Grading and Lesion Segmentation\",\"authors\":\"Jingxin Mao;Xiaoyu Ma;Yanlong Bi;Rongqing Zhang\",\"doi\":\"10.1109/TBDATA.2024.3442548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a debilitating ocular complication demanding timely intervention and treatment. The rapid evolution of deep learning (DL) has notably enhanced the efficiency of conventional manual diagnosis. However, the scarcity of existing DR datasets hinders the progress of data-driven DL models, especially for pixel-level lesion annotation datasets, which severely impedes the advancement of DR lesion segmentation tasks required for precise interpretations of DR grading. Furthermore, the escalating concerns surrounding medical data security and privacy induce data collection challenges for traditional centralized learning, exacerbating the issue of data silos. Federated learning (FL) emerges as a privacy-preserving distributed learning paradigm. Nevertheless, the existing literature lacks a comprehensive FL framework for DR diagnosis and fails to exploit multiple diverse DR datasets simultaneously. To address the challenges of data scarcity and privacy, we construct a high-quality pixel-level DR lesion annotation dataset (TJDR) and propose a novel FL-based DR diagnosis framework including both DR grading and multi-lesion segmentation. Moreover, to tackle the scarcity of pixel-level DR lesion datasets, we propose <inline-formula><tex-math>$\\\\bm {\\\\alpha }$</tex-math></inline-formula>-Fed and adaptive-<inline-formula><tex-math>$\\\\bm {\\\\alpha }$</tex-math></inline-formula>-Fed, two efficient cross-dataset FL algorithms. Extensive experiments demonstrate the effectiveness of our proposed framework and the two cross-dataset FL algorithms.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"1158-1170\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634805/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634805/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)是一种使人衰弱的眼部并发症,需要及时干预和治疗。深度学习(DL)的快速发展显著提高了传统人工诊断的效率。然而,现有DR数据集的稀缺性阻碍了数据驱动的深度学习模型的发展,特别是对于像素级病变注释数据集,这严重阻碍了DR分级精确解释所需的DR病变分割任务的进展。此外,对医疗数据安全和隐私的日益关注给传统的集中式学习带来了数据收集挑战,加剧了数据孤岛问题。联邦学习(FL)作为一种保护隐私的分布式学习范式而出现。然而,现有文献缺乏一个全面的DR诊断FL框架,未能同时利用多个不同的DR数据集。为了解决数据稀缺性和隐私性的挑战,我们构建了高质量的像素级DR病变标注数据集(TJDR),并提出了一种新的基于fl的DR诊断框架,包括DR分级和多病变分割。此外,为了解决像素级DR病变数据集的稀缺问题,我们提出了$\bm {\alpha}$- fed和adaptive-$\bm {\alpha}$- fed两种高效的跨数据集FL算法。大量的实验证明了我们提出的框架和两种跨数据集FL算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Federated Learning Framework for Diabetic Retinopathy Grading and Lesion Segmentation
Diabetic retinopathy (DR) is a debilitating ocular complication demanding timely intervention and treatment. The rapid evolution of deep learning (DL) has notably enhanced the efficiency of conventional manual diagnosis. However, the scarcity of existing DR datasets hinders the progress of data-driven DL models, especially for pixel-level lesion annotation datasets, which severely impedes the advancement of DR lesion segmentation tasks required for precise interpretations of DR grading. Furthermore, the escalating concerns surrounding medical data security and privacy induce data collection challenges for traditional centralized learning, exacerbating the issue of data silos. Federated learning (FL) emerges as a privacy-preserving distributed learning paradigm. Nevertheless, the existing literature lacks a comprehensive FL framework for DR diagnosis and fails to exploit multiple diverse DR datasets simultaneously. To address the challenges of data scarcity and privacy, we construct a high-quality pixel-level DR lesion annotation dataset (TJDR) and propose a novel FL-based DR diagnosis framework including both DR grading and multi-lesion segmentation. Moreover, to tackle the scarcity of pixel-level DR lesion datasets, we propose $\bm {\alpha }$-Fed and adaptive-$\bm {\alpha }$-Fed, two efficient cross-dataset FL algorithms. Extensive experiments demonstrate the effectiveness of our proposed framework and the two cross-dataset FL algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信