{"title":"适应任何:使用文本到图像扩散模型跨域和类别定制任何图像分类器","authors":"Weijie Chen;Haoyu Wang;Shicai Yang;Lei Zhang;Wei Wei;Yanning Zhang;Luojun Lin;Di Xie;Yueting Zhuang","doi":"10.1109/TBDATA.2025.3536933","DOIUrl":null,"url":null,"abstract":"We study a novel problem in this paper, that is, if a modern text-to-image diffusion model can tailor any image classifier across domains and categories. Existing domain adaption works exploit both source and target data for domain alignment so as to transfer the knowledge from the labeled source data to the unlabeled target data. However, as the development of text-to-image diffusion models, we wonder if the high-fidelity synthetic data can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each image classification task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with labels derived from text prompts, and then leverage them as a bridge to dig out the knowledge from the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as any unlabeled target data. Extensive experiments validate the feasibility of this idea, which even surprisingly surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1013-1026"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapt Anything: Tailor Any Image Classifier Across Domains and Categories Using Text-to-Image Diffusion Models\",\"authors\":\"Weijie Chen;Haoyu Wang;Shicai Yang;Lei Zhang;Wei Wei;Yanning Zhang;Luojun Lin;Di Xie;Yueting Zhuang\",\"doi\":\"10.1109/TBDATA.2025.3536933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a novel problem in this paper, that is, if a modern text-to-image diffusion model can tailor any image classifier across domains and categories. Existing domain adaption works exploit both source and target data for domain alignment so as to transfer the knowledge from the labeled source data to the unlabeled target data. However, as the development of text-to-image diffusion models, we wonder if the high-fidelity synthetic data can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each image classification task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with labels derived from text prompts, and then leverage them as a bridge to dig out the knowledge from the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as any unlabeled target data. Extensive experiments validate the feasibility of this idea, which even surprisingly surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 3\",\"pages\":\"1013-1026\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858456/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858456/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adapt Anything: Tailor Any Image Classifier Across Domains and Categories Using Text-to-Image Diffusion Models
We study a novel problem in this paper, that is, if a modern text-to-image diffusion model can tailor any image classifier across domains and categories. Existing domain adaption works exploit both source and target data for domain alignment so as to transfer the knowledge from the labeled source data to the unlabeled target data. However, as the development of text-to-image diffusion models, we wonder if the high-fidelity synthetic data can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each image classification task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with labels derived from text prompts, and then leverage them as a bridge to dig out the knowledge from the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as any unlabeled target data. Extensive experiments validate the feasibility of this idea, which even surprisingly surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.