Chan Wang , Muhammad Umair , Yuxun Jiang , Dhanunjaya K. Nerella , Muhammad Adil Ali , Ingo Steinbach
{"title":"模型高温合金中γ′和γ′析出的形态演变:来自3D相场模拟的见解","authors":"Chan Wang , Muhammad Umair , Yuxun Jiang , Dhanunjaya K. Nerella , Muhammad Adil Ali , Ingo Steinbach","doi":"10.1016/j.commatsci.2025.113972","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the role of nucleation conditions of γ'' and γ' strengthening phases in determining the microstructural characteristics of Ni-based superalloys. A 3D phase-field model is employed to investigate the competitive growth behavior of these phases under aging conditions at 850 K. The analysis reveals that the initial nucleation conditions significantly affect the equilibrium phase morphology, including size dispersion and spatial distribution, while the final equilibrium volume fractions remain constant. Equal initial nucleation densities of γ'' and γ' phases promote a more uniform spatial distribution, reduced size dispersion, and decreased von Mises stress, leading to improved precipitation strengthening. This is particularly important, as both precipitate phases show an opposite sign of the misfit compared to the matrix. This leads to a minimum state of elastic energy for an even distribution of precipitates in an alternating setting and allows for tuning of the equilibrium fraction, constrained by elastic interaction. These findings highlight the importance of optimizing preferential nucleation to enhance the microstructure and properties of Ni-based superalloys.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"256 ","pages":"Article 113972"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological evolution of γ' and γ'' precipitation in a model superalloy: Insights from 3D phase-field simulations\",\"authors\":\"Chan Wang , Muhammad Umair , Yuxun Jiang , Dhanunjaya K. Nerella , Muhammad Adil Ali , Ingo Steinbach\",\"doi\":\"10.1016/j.commatsci.2025.113972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the role of nucleation conditions of γ'' and γ' strengthening phases in determining the microstructural characteristics of Ni-based superalloys. A 3D phase-field model is employed to investigate the competitive growth behavior of these phases under aging conditions at 850 K. The analysis reveals that the initial nucleation conditions significantly affect the equilibrium phase morphology, including size dispersion and spatial distribution, while the final equilibrium volume fractions remain constant. Equal initial nucleation densities of γ'' and γ' phases promote a more uniform spatial distribution, reduced size dispersion, and decreased von Mises stress, leading to improved precipitation strengthening. This is particularly important, as both precipitate phases show an opposite sign of the misfit compared to the matrix. This leads to a minimum state of elastic energy for an even distribution of precipitates in an alternating setting and allows for tuning of the equilibrium fraction, constrained by elastic interaction. These findings highlight the importance of optimizing preferential nucleation to enhance the microstructure and properties of Ni-based superalloys.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"256 \",\"pages\":\"Article 113972\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625003155\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625003155","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Morphological evolution of γ' and γ'' precipitation in a model superalloy: Insights from 3D phase-field simulations
This study explores the role of nucleation conditions of γ'' and γ' strengthening phases in determining the microstructural characteristics of Ni-based superalloys. A 3D phase-field model is employed to investigate the competitive growth behavior of these phases under aging conditions at 850 K. The analysis reveals that the initial nucleation conditions significantly affect the equilibrium phase morphology, including size dispersion and spatial distribution, while the final equilibrium volume fractions remain constant. Equal initial nucleation densities of γ'' and γ' phases promote a more uniform spatial distribution, reduced size dispersion, and decreased von Mises stress, leading to improved precipitation strengthening. This is particularly important, as both precipitate phases show an opposite sign of the misfit compared to the matrix. This leads to a minimum state of elastic energy for an even distribution of precipitates in an alternating setting and allows for tuning of the equilibrium fraction, constrained by elastic interaction. These findings highlight the importance of optimizing preferential nucleation to enhance the microstructure and properties of Ni-based superalloys.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.