一种新的局部主动记忆电阻器驱动神经元图的丰富动态行为

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tao Ma , Jun Mou , Wanzhong Chen
{"title":"一种新的局部主动记忆电阻器驱动神经元图的丰富动态行为","authors":"Tao Ma ,&nbsp;Jun Mou ,&nbsp;Wanzhong Chen","doi":"10.1016/j.chaos.2025.116537","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of neuron models using memristors with bionic properties can provide new ideas for brain-like research. This paper proposes a novel discrete locally active memristor (DLAM) designed to drive neuron map to generate complex chaotic dynamics. The nonvolatility and locally active properties of the proposed memristor are exhaustively investigated. The bifurcation behavior is analyzed by varying the DLAM-dependent parameters and interesting Feigenbaum remerging trees are found. Moreover, the variation of the memristor parameters is capable of triggering multistability and generating complex heterogeneous coexistence. Adjusting the initial conditions of the memristor was able to induce offset-boosted coexistence with a hybrid topology. Finally, a pseudo random sequence generator (PRNG) is designed using chaotic sequences generated by DLAM-driven neuron map and shows excellent performance. A DSP experimental platform was built for numerical simulation verification. The novel DLAM is proposed to provide new insights for the study of nonlinear behavior in neuron models.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":"Article 116537"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enriched dynamical behavior of a novel locally active memristor-driven neuron map\",\"authors\":\"Tao Ma ,&nbsp;Jun Mou ,&nbsp;Wanzhong Chen\",\"doi\":\"10.1016/j.chaos.2025.116537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of neuron models using memristors with bionic properties can provide new ideas for brain-like research. This paper proposes a novel discrete locally active memristor (DLAM) designed to drive neuron map to generate complex chaotic dynamics. The nonvolatility and locally active properties of the proposed memristor are exhaustively investigated. The bifurcation behavior is analyzed by varying the DLAM-dependent parameters and interesting Feigenbaum remerging trees are found. Moreover, the variation of the memristor parameters is capable of triggering multistability and generating complex heterogeneous coexistence. Adjusting the initial conditions of the memristor was able to induce offset-boosted coexistence with a hybrid topology. Finally, a pseudo random sequence generator (PRNG) is designed using chaotic sequences generated by DLAM-driven neuron map and shows excellent performance. A DSP experimental platform was built for numerical simulation verification. The novel DLAM is proposed to provide new insights for the study of nonlinear behavior in neuron models.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"198 \",\"pages\":\"Article 116537\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925005508\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005508","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

利用具有仿生特性的忆阻器构建神经元模型可以为类脑研究提供新的思路。提出了一种新的离散局部有源忆阻器(DLAM),用于驱动神经元映射产生复杂的混沌动力学。对所提出的忆阻器的非挥发性和局部有源性进行了详尽的研究。通过改变与dram相关的参数分析了分岔行为,发现了有趣的Feigenbaum重树。此外,忆阻器参数的变化能够触发多稳定并产生复杂的异质共存。调整忆阻器的初始条件能够诱导偏移增强与混合拓扑共存。最后,利用dram驱动的神经元映射生成的混沌序列,设计了伪随机序列发生器(PRNG),并取得了良好的效果。搭建了DSP实验平台进行数值仿真验证。提出了新的DLAM,为神经元模型的非线性行为研究提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriched dynamical behavior of a novel locally active memristor-driven neuron map
The construction of neuron models using memristors with bionic properties can provide new ideas for brain-like research. This paper proposes a novel discrete locally active memristor (DLAM) designed to drive neuron map to generate complex chaotic dynamics. The nonvolatility and locally active properties of the proposed memristor are exhaustively investigated. The bifurcation behavior is analyzed by varying the DLAM-dependent parameters and interesting Feigenbaum remerging trees are found. Moreover, the variation of the memristor parameters is capable of triggering multistability and generating complex heterogeneous coexistence. Adjusting the initial conditions of the memristor was able to induce offset-boosted coexistence with a hybrid topology. Finally, a pseudo random sequence generator (PRNG) is designed using chaotic sequences generated by DLAM-driven neuron map and shows excellent performance. A DSP experimental platform was built for numerical simulation verification. The novel DLAM is proposed to provide new insights for the study of nonlinear behavior in neuron models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信