集合卡尔曼反演的Nesterov加速及其变体

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sydney Vernon , Eviatar Bach , Oliver R.A. Dunbar
{"title":"集合卡尔曼反演的Nesterov加速及其变体","authors":"Sydney Vernon ,&nbsp;Eviatar Bach ,&nbsp;Oliver R.A. Dunbar","doi":"10.1016/j.jcp.2025.114063","DOIUrl":null,"url":null,"abstract":"<div><div>Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows the application of methods for accelerating gradient descent. Here, we show that Nesterov acceleration is effective in speeding up the reduction of the EKI cost function on a variety of inverse problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman inversion and ensemble transform Kalman inversion. Our specific implementation takes the form of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any existing EKI variant algorithms, comes with no additional computational expense, and with no additional tuning hyperparameters. This work shows a pathway for future research to translate advances in gradient-based optimization into advances in gradient-free Kalman optimization.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"535 ","pages":"Article 114063"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nesterov acceleration for ensemble Kalman inversion and variants\",\"authors\":\"Sydney Vernon ,&nbsp;Eviatar Bach ,&nbsp;Oliver R.A. Dunbar\",\"doi\":\"10.1016/j.jcp.2025.114063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows the application of methods for accelerating gradient descent. Here, we show that Nesterov acceleration is effective in speeding up the reduction of the EKI cost function on a variety of inverse problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman inversion and ensemble transform Kalman inversion. Our specific implementation takes the form of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any existing EKI variant algorithms, comes with no additional computational expense, and with no additional tuning hyperparameters. This work shows a pathway for future research to translate advances in gradient-based optimization into advances in gradient-free Kalman optimization.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"535 \",\"pages\":\"Article 114063\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125003468\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003468","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

集合卡尔曼反演(EKI)是一种求解逆问题的无导数、基于粒子的优化方法。结果表明,EKI近似于梯度流,从而可以应用加速梯度下降的方法。在这里,我们证明了Nesterov加速在加速各种逆问题上EKI代价函数的约简方面是有效的。我们还实现了两种EKI变体的Nesterov加速,即unscented Kalman反演和集合变换Kalman反演。我们的具体实现采用粒子级轻推的形式,可以很容易地以黑盒方式与任何现有的EKI变体算法耦合,没有额外的计算费用,也没有额外的调优超参数。这项工作为未来的研究提供了一条途径,将基于梯度的优化的进展转化为无梯度卡尔曼优化的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nesterov acceleration for ensemble Kalman inversion and variants
Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows the application of methods for accelerating gradient descent. Here, we show that Nesterov acceleration is effective in speeding up the reduction of the EKI cost function on a variety of inverse problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman inversion and ensemble transform Kalman inversion. Our specific implementation takes the form of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any existing EKI variant algorithms, comes with no additional computational expense, and with no additional tuning hyperparameters. This work shows a pathway for future research to translate advances in gradient-based optimization into advances in gradient-free Kalman optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信