{"title":"GPX4降解通过伴侣介导的自噬参与热应激诱导的肝损伤","authors":"Ting Wang, Xiao Liu, Xinyu Feng, Zhenyu Zhang, Ruiyi Lv, Wenhong Feng, Yukun Zhou, Xueyu Liao, Haoming Tang, Ming Xu","doi":"10.1016/j.bbamcr.2025.119988","DOIUrl":null,"url":null,"abstract":"<div><div>Heat stress (HS) is a significant health concern that adversely affects both human and animal health, particularly impacting liver function due to its central metabolic role. This study investigated the mechanisms underlying HS-induced liver injury, focusing on the role of ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation and cellular iron accumulation. Using mouse and cellular HS models, the results demonstrated that HS induced liver injury through ferroptosis, as evidenced by increased levels of malondialdehyde (MDA), oxidized glutathione (GSSG), and iron, alongside decreased glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) effectively mitigated HS-induced liver damage, reducing oxidative stress and restoring GPX4 levels. Furthermore, HS promoted the lysosomal degradation of GPX4 via the chaperone-mediated autophagy (CMA) pathway, which was regulated by heat shock cognate protein 70 (HSC70) and lysosome-associated membrane protein 2A (LAMP2A). Knockdown of LAMP2A in hepatocytes significantly suppressed HS-induced GPX4 degradation, confirming the critical role of CMA in this process. Inhibition of CMA using Apoptozole, an HSC70 inhibitor, or Bafilomycin A1 (Baf-A1), a lysosomal inhibitor, further attenuated HS-induced ferroptosis and liver injury. These findings highlight the critical role of CMA-mediated GPX4 degradation in HS-induced ferroptosis and liver injury, providing potential therapeutic targets for mitigating HS-related liver damage.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 6","pages":"Article 119988"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPX4 degradation contributes to heat stress-induced liver injury via chaperone-mediated autophagy\",\"authors\":\"Ting Wang, Xiao Liu, Xinyu Feng, Zhenyu Zhang, Ruiyi Lv, Wenhong Feng, Yukun Zhou, Xueyu Liao, Haoming Tang, Ming Xu\",\"doi\":\"10.1016/j.bbamcr.2025.119988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat stress (HS) is a significant health concern that adversely affects both human and animal health, particularly impacting liver function due to its central metabolic role. This study investigated the mechanisms underlying HS-induced liver injury, focusing on the role of ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation and cellular iron accumulation. Using mouse and cellular HS models, the results demonstrated that HS induced liver injury through ferroptosis, as evidenced by increased levels of malondialdehyde (MDA), oxidized glutathione (GSSG), and iron, alongside decreased glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) effectively mitigated HS-induced liver damage, reducing oxidative stress and restoring GPX4 levels. Furthermore, HS promoted the lysosomal degradation of GPX4 via the chaperone-mediated autophagy (CMA) pathway, which was regulated by heat shock cognate protein 70 (HSC70) and lysosome-associated membrane protein 2A (LAMP2A). Knockdown of LAMP2A in hepatocytes significantly suppressed HS-induced GPX4 degradation, confirming the critical role of CMA in this process. Inhibition of CMA using Apoptozole, an HSC70 inhibitor, or Bafilomycin A1 (Baf-A1), a lysosomal inhibitor, further attenuated HS-induced ferroptosis and liver injury. These findings highlight the critical role of CMA-mediated GPX4 degradation in HS-induced ferroptosis and liver injury, providing potential therapeutic targets for mitigating HS-related liver damage.</div></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1872 6\",\"pages\":\"Article 119988\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016748892500093X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016748892500093X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
GPX4 degradation contributes to heat stress-induced liver injury via chaperone-mediated autophagy
Heat stress (HS) is a significant health concern that adversely affects both human and animal health, particularly impacting liver function due to its central metabolic role. This study investigated the mechanisms underlying HS-induced liver injury, focusing on the role of ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation and cellular iron accumulation. Using mouse and cellular HS models, the results demonstrated that HS induced liver injury through ferroptosis, as evidenced by increased levels of malondialdehyde (MDA), oxidized glutathione (GSSG), and iron, alongside decreased glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) effectively mitigated HS-induced liver damage, reducing oxidative stress and restoring GPX4 levels. Furthermore, HS promoted the lysosomal degradation of GPX4 via the chaperone-mediated autophagy (CMA) pathway, which was regulated by heat shock cognate protein 70 (HSC70) and lysosome-associated membrane protein 2A (LAMP2A). Knockdown of LAMP2A in hepatocytes significantly suppressed HS-induced GPX4 degradation, confirming the critical role of CMA in this process. Inhibition of CMA using Apoptozole, an HSC70 inhibitor, or Bafilomycin A1 (Baf-A1), a lysosomal inhibitor, further attenuated HS-induced ferroptosis and liver injury. These findings highlight the critical role of CMA-mediated GPX4 degradation in HS-induced ferroptosis and liver injury, providing potential therapeutic targets for mitigating HS-related liver damage.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.