含圆柱和球面非均匀性多孔介质的宏观非线性过滤规律

IF 2.5 3区 工程技术 Q2 MECHANICS
V. Monchiet
{"title":"含圆柱和球面非均匀性多孔介质的宏观非线性过滤规律","authors":"V. Monchiet","doi":"10.1016/j.euromechflu.2025.204264","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides the macroscopic non-linear filtration law of a two-phase porous medium with cylindrical or spherical inhomogeneities. At the local scale, the fluid flow in both phases of the composite porous material obeys the Forchheimer law. The macroscopic law is obtained in the framework of the non-linear variational homogenization method, considering unit cells with concentric cylinders or spheres subjected to homogeneous boundary conditions. In order to derive a closed-form expression of the macroscopic law, we employ the kinematic approach with trial velocity fields inspired by a linear solution. The resulting analytical model is then compared with numerical upper and lower bounds, demonstrating its high accuracy. Finally, we provide comparisons with numerical results for unit cells containing a population of polydisperse inclusions.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"113 ","pages":"Article 204264"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroscopic non-linear filtration law for porous media containing cylindrical and spherical inhomogeneities\",\"authors\":\"V. Monchiet\",\"doi\":\"10.1016/j.euromechflu.2025.204264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper provides the macroscopic non-linear filtration law of a two-phase porous medium with cylindrical or spherical inhomogeneities. At the local scale, the fluid flow in both phases of the composite porous material obeys the Forchheimer law. The macroscopic law is obtained in the framework of the non-linear variational homogenization method, considering unit cells with concentric cylinders or spheres subjected to homogeneous boundary conditions. In order to derive a closed-form expression of the macroscopic law, we employ the kinematic approach with trial velocity fields inspired by a linear solution. The resulting analytical model is then compared with numerical upper and lower bounds, demonstrating its high accuracy. Finally, we provide comparisons with numerical results for unit cells containing a population of polydisperse inclusions.</div></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"113 \",\"pages\":\"Article 204264\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S099775462500038X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S099775462500038X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有圆柱形和球形非均匀性的两相多孔介质的宏观非线性过滤规律。在局部尺度上,复合多孔材料两相的流体流动均遵循Forchheimer定律。在非线性变分均匀化方法的框架下,考虑具有同心圆柱面或球面的单元胞在均匀边界条件下的宏观规律。为了推导出宏观规律的封闭表达式,我们采用了受线性解启发的带试速度场的运动学方法。将所得的解析模型与数值上下界进行了比较,证明了其较高的精度。最后,我们对含有多分散内含物的单元胞提供了数值结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macroscopic non-linear filtration law for porous media containing cylindrical and spherical inhomogeneities
This paper provides the macroscopic non-linear filtration law of a two-phase porous medium with cylindrical or spherical inhomogeneities. At the local scale, the fluid flow in both phases of the composite porous material obeys the Forchheimer law. The macroscopic law is obtained in the framework of the non-linear variational homogenization method, considering unit cells with concentric cylinders or spheres subjected to homogeneous boundary conditions. In order to derive a closed-form expression of the macroscopic law, we employ the kinematic approach with trial velocity fields inspired by a linear solution. The resulting analytical model is then compared with numerical upper and lower bounds, demonstrating its high accuracy. Finally, we provide comparisons with numerical results for unit cells containing a population of polydisperse inclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信