机器学习与深度学习模型在入侵检测系统二分类与多分类中的比较研究

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-05-08 DOI:10.1016/j.array.2025.100406
Ayesha Alharthi, Meera Alaryani, Sanaa Kaddoura
{"title":"机器学习与深度学习模型在入侵检测系统二分类与多分类中的比较研究","authors":"Ayesha Alharthi,&nbsp;Meera Alaryani,&nbsp;Sanaa Kaddoura","doi":"10.1016/j.array.2025.100406","DOIUrl":null,"url":null,"abstract":"<div><div>Network infrastructure evolution has significantly expanded the attack surface, leading to increasingly complex and sophisticated cybersecurity threats. Traditional rule-based intrusion detection systems (IDS) often fail to detect emerging attack vectors, prompting the need for intelligent, data-driven approaches. This study evaluates and compares the performance of machine learning (ML) and deep learning (DL) models for network intrusion detection. Two publicly available datasets were utilized: a binary-labeled software-defined networking (SDN) dataset and a multiclass industrial control system dataset based on the IEC 60870-5-104 protocol. Preprocessing steps included normalization, label encoding, and a 70:10:20 train-validation-test split. Seven models, Random Forest, Decision Tree, K-Nearest Neighbors, XGBoost, Convolutional Neural Network, Gated Recurrent Unit, and Long Short-Term Memory, were trained and evaluated using precision, recall, and F1-score. The Random Forest model achieved the highest F1-score of 93.57 % on the IEC 60870-5-104 dataset, while XGBoost attained a near-perfect F1-score of 99.97 % on the SDN dataset. These results outperform comparable models in the literature and offer practical insights for selecting effective IDS solutions based on classification type and dataset structure.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"26 ","pages":"Article 100406"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of machine learning and deep learning models in binary and multiclass classification for intrusion detection systems\",\"authors\":\"Ayesha Alharthi,&nbsp;Meera Alaryani,&nbsp;Sanaa Kaddoura\",\"doi\":\"10.1016/j.array.2025.100406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Network infrastructure evolution has significantly expanded the attack surface, leading to increasingly complex and sophisticated cybersecurity threats. Traditional rule-based intrusion detection systems (IDS) often fail to detect emerging attack vectors, prompting the need for intelligent, data-driven approaches. This study evaluates and compares the performance of machine learning (ML) and deep learning (DL) models for network intrusion detection. Two publicly available datasets were utilized: a binary-labeled software-defined networking (SDN) dataset and a multiclass industrial control system dataset based on the IEC 60870-5-104 protocol. Preprocessing steps included normalization, label encoding, and a 70:10:20 train-validation-test split. Seven models, Random Forest, Decision Tree, K-Nearest Neighbors, XGBoost, Convolutional Neural Network, Gated Recurrent Unit, and Long Short-Term Memory, were trained and evaluated using precision, recall, and F1-score. The Random Forest model achieved the highest F1-score of 93.57 % on the IEC 60870-5-104 dataset, while XGBoost attained a near-perfect F1-score of 99.97 % on the SDN dataset. These results outperform comparable models in the literature and offer practical insights for selecting effective IDS solutions based on classification type and dataset structure.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"26 \",\"pages\":\"Article 100406\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625000335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

网络基础设施的发展大大扩展了攻击面,导致网络安全威胁日益复杂和复杂。传统的基于规则的入侵检测系统(IDS)往往无法检测到新出现的攻击向量,这促使人们需要智能的、数据驱动的方法。本研究评估并比较了用于网络入侵检测的机器学习(ML)和深度学习(DL)模型的性能。使用了两个公开可用的数据集:一个二进制标记的软件定义网络(SDN)数据集和一个基于IEC 60870-5-104协议的多类工业控制系统数据集。预处理步骤包括规范化、标签编码和70:10:20训练-验证-测试分割。随机森林、决策树、k近邻、XGBoost、卷积神经网络、门控循环单元和长短期记忆等7个模型进行了训练,并使用精度、召回率和f1评分进行了评估。随机森林模型在IEC 60870-5-104数据集上获得了最高的f1分数93.57%,而XGBoost在SDN数据集上获得了近乎完美的f1分数99.97%。这些结果优于文献中的可比模型,并为基于分类类型和数据集结构选择有效的IDS解决方案提供了实用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of machine learning and deep learning models in binary and multiclass classification for intrusion detection systems
Network infrastructure evolution has significantly expanded the attack surface, leading to increasingly complex and sophisticated cybersecurity threats. Traditional rule-based intrusion detection systems (IDS) often fail to detect emerging attack vectors, prompting the need for intelligent, data-driven approaches. This study evaluates and compares the performance of machine learning (ML) and deep learning (DL) models for network intrusion detection. Two publicly available datasets were utilized: a binary-labeled software-defined networking (SDN) dataset and a multiclass industrial control system dataset based on the IEC 60870-5-104 protocol. Preprocessing steps included normalization, label encoding, and a 70:10:20 train-validation-test split. Seven models, Random Forest, Decision Tree, K-Nearest Neighbors, XGBoost, Convolutional Neural Network, Gated Recurrent Unit, and Long Short-Term Memory, were trained and evaluated using precision, recall, and F1-score. The Random Forest model achieved the highest F1-score of 93.57 % on the IEC 60870-5-104 dataset, while XGBoost attained a near-perfect F1-score of 99.97 % on the SDN dataset. These results outperform comparable models in the literature and offer practical insights for selecting effective IDS solutions based on classification type and dataset structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信