低复杂度AV1帧内预测算法

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wanwei Huang , Xuan Xie , Yu Chen , Baotu Wang , Jian Chen , Pingping Chen
{"title":"低复杂度AV1帧内预测算法","authors":"Wanwei Huang ,&nbsp;Xuan Xie ,&nbsp;Yu Chen ,&nbsp;Baotu Wang ,&nbsp;Jian Chen ,&nbsp;Pingping Chen","doi":"10.1016/j.jvcir.2025.104464","DOIUrl":null,"url":null,"abstract":"<div><div>As a new-generation video coding standard, Alliance for Open Media Video 1 (AV1) introduces flexible and diverse block partition types to improve coding efficiency, but also increases coding complexity. To address this issue, we propose a low-complexity AV1 intra prediction algorithm using Long-edge Sparse Sampling (LSS) and Chroma Migrating from Luma (CML) for efficiently encoding video sequences. First, we develop an LSS method by selecting key reference pixels based on block partition condition to reduce computational complexity. Second, we exploit a CML algorithm which combines the angle mode of the luma component and the spatial correlations of chroma components to derive more accurate linear model parameters between the luma and chroma components. Experimental results show that LSS avoids division operations, reducing 93% of addition operations. Combined with CML, our approach saves 4.97% time and enhances coding performance compared to standard AV1, particularly improving chroma component quality.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"110 ","pages":"Article 104464"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-complexity AV1 intra prediction algorithm\",\"authors\":\"Wanwei Huang ,&nbsp;Xuan Xie ,&nbsp;Yu Chen ,&nbsp;Baotu Wang ,&nbsp;Jian Chen ,&nbsp;Pingping Chen\",\"doi\":\"10.1016/j.jvcir.2025.104464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a new-generation video coding standard, Alliance for Open Media Video 1 (AV1) introduces flexible and diverse block partition types to improve coding efficiency, but also increases coding complexity. To address this issue, we propose a low-complexity AV1 intra prediction algorithm using Long-edge Sparse Sampling (LSS) and Chroma Migrating from Luma (CML) for efficiently encoding video sequences. First, we develop an LSS method by selecting key reference pixels based on block partition condition to reduce computational complexity. Second, we exploit a CML algorithm which combines the angle mode of the luma component and the spatial correlations of chroma components to derive more accurate linear model parameters between the luma and chroma components. Experimental results show that LSS avoids division operations, reducing 93% of addition operations. Combined with CML, our approach saves 4.97% time and enhances coding performance compared to standard AV1, particularly improving chroma component quality.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"110 \",\"pages\":\"Article 104464\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325000781\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000781","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

AV1 (Alliance for Open Media video 1)作为新一代视频编码标准,在提高编码效率的同时引入了灵活多样的块分区类型,但也增加了编码复杂度。为了解决这个问题,我们提出了一种低复杂度的AV1帧内预测算法,该算法使用长边缘稀疏采样(LSS)和从亮度(CML)迁移色度(Chroma)来有效地编码视频序列。首先,我们开发了一种基于块划分条件选择关键参考像素的LSS方法,以降低计算复杂度。其次,我们利用CML算法将亮度分量的角度模式和色度分量的空间相关性结合起来,得到更精确的亮度和色度分量之间的线性模型参数。实验结果表明,LSS避免了除法运算,减少了93%的加法运算。结合CML,与标准AV1相比,我们的方法节省了4.97%的时间,提高了编码性能,特别是提高了色度分量的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-complexity AV1 intra prediction algorithm
As a new-generation video coding standard, Alliance for Open Media Video 1 (AV1) introduces flexible and diverse block partition types to improve coding efficiency, but also increases coding complexity. To address this issue, we propose a low-complexity AV1 intra prediction algorithm using Long-edge Sparse Sampling (LSS) and Chroma Migrating from Luma (CML) for efficiently encoding video sequences. First, we develop an LSS method by selecting key reference pixels based on block partition condition to reduce computational complexity. Second, we exploit a CML algorithm which combines the angle mode of the luma component and the spatial correlations of chroma components to derive more accurate linear model parameters between the luma and chroma components. Experimental results show that LSS avoids division operations, reducing 93% of addition operations. Combined with CML, our approach saves 4.97% time and enhances coding performance compared to standard AV1, particularly improving chroma component quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信