Zongqi Wan , Jialin Zhang , Xiaoming Sun , Zhijie Zhang
{"title":"对称子模函数最大化的高效确定性算法","authors":"Zongqi Wan , Jialin Zhang , Xiaoming Sun , Zhijie Zhang","doi":"10.1016/j.tcs.2025.115312","DOIUrl":null,"url":null,"abstract":"<div><div>Symmetric submodular maximization is an important class of combinatorial optimization problems, including MAX-CUT on graphs and hyper-graphs. The state-of-the-art algorithm for the problem over general constraints has an approximation ratio of 0.432 <span><span>[16]</span></span>. The algorithm applies the canonical continuous greedy technique that involves a sampling process. It, therefore, suffers from high query complexity and is inherently randomized. In this paper, we present several efficient deterministic algorithms for maximizing a symmetric submodular function under various constraints. Specifically, for the cardinality constraint, we design a deterministic algorithm that attains a 0.432 ratio and uses <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm attains a <span><math><mn>0.385</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mrow><mo>(</mo><mi>k</mi><mi>n</mi><msup><mrow><mo>(</mo><mfrac><mrow><mn>10</mn></mrow><mrow><mn>9</mn><mi>ϵ</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mfrac><mrow><mn>20</mn></mrow><mrow><mn>9</mn><mi>ϵ</mi></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> queries <span><span>[12]</span></span>. For the matroid constraint, we design a deterministic algorithm that attains a <span><math><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo></mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm can also attain <span><math><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio but it uses much larger <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> queries <span><span>[24]</span></span>. For the packing constraints with a large width, we design a deterministic algorithm that attains a <span><math><mn>0.432</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries. To the best of our knowledge, there is no deterministic algorithm for the constraint previously. The last algorithm can be adapted to attain a 0.432 ratio for single knapsack constraint using <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm attains a <span><math><mn>0.316</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> queries <span><span>[2]</span></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1046 ","pages":"Article 115312"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient deterministic algorithms for maximizing symmetric submodular functions\",\"authors\":\"Zongqi Wan , Jialin Zhang , Xiaoming Sun , Zhijie Zhang\",\"doi\":\"10.1016/j.tcs.2025.115312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Symmetric submodular maximization is an important class of combinatorial optimization problems, including MAX-CUT on graphs and hyper-graphs. The state-of-the-art algorithm for the problem over general constraints has an approximation ratio of 0.432 <span><span>[16]</span></span>. The algorithm applies the canonical continuous greedy technique that involves a sampling process. It, therefore, suffers from high query complexity and is inherently randomized. In this paper, we present several efficient deterministic algorithms for maximizing a symmetric submodular function under various constraints. Specifically, for the cardinality constraint, we design a deterministic algorithm that attains a 0.432 ratio and uses <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm attains a <span><math><mn>0.385</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mrow><mo>(</mo><mi>k</mi><mi>n</mi><msup><mrow><mo>(</mo><mfrac><mrow><mn>10</mn></mrow><mrow><mn>9</mn><mi>ϵ</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mfrac><mrow><mn>20</mn></mrow><mrow><mn>9</mn><mi>ϵ</mi></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> queries <span><span>[12]</span></span>. For the matroid constraint, we design a deterministic algorithm that attains a <span><math><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo></mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm can also attain <span><math><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio but it uses much larger <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> queries <span><span>[24]</span></span>. For the packing constraints with a large width, we design a deterministic algorithm that attains a <span><math><mn>0.432</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries. To the best of our knowledge, there is no deterministic algorithm for the constraint previously. The last algorithm can be adapted to attain a 0.432 ratio for single knapsack constraint using <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm attains a <span><math><mn>0.316</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> queries <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1046 \",\"pages\":\"Article 115312\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525002506\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525002506","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Efficient deterministic algorithms for maximizing symmetric submodular functions
Symmetric submodular maximization is an important class of combinatorial optimization problems, including MAX-CUT on graphs and hyper-graphs. The state-of-the-art algorithm for the problem over general constraints has an approximation ratio of 0.432 [16]. The algorithm applies the canonical continuous greedy technique that involves a sampling process. It, therefore, suffers from high query complexity and is inherently randomized. In this paper, we present several efficient deterministic algorithms for maximizing a symmetric submodular function under various constraints. Specifically, for the cardinality constraint, we design a deterministic algorithm that attains a 0.432 ratio and uses queries. Previously, the best deterministic algorithm attains a ratio and uses queries [12]. For the matroid constraint, we design a deterministic algorithm that attains a ratio and uses queries. Previously, the best deterministic algorithm can also attain ratio but it uses much larger queries [24]. For the packing constraints with a large width, we design a deterministic algorithm that attains a ratio and uses queries. To the best of our knowledge, there is no deterministic algorithm for the constraint previously. The last algorithm can be adapted to attain a 0.432 ratio for single knapsack constraint using queries. Previously, the best deterministic algorithm attains a ratio and uses queries [2].
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.