生成神经结构搜索

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaotong Zhai , Shu Li , Guoqiang Zhong , Tao Li , Fuchang Zhang , Rachid Hedjam
{"title":"生成神经结构搜索","authors":"Xiaotong Zhai ,&nbsp;Shu Li ,&nbsp;Guoqiang Zhong ,&nbsp;Tao Li ,&nbsp;Fuchang Zhang ,&nbsp;Rachid Hedjam","doi":"10.1016/j.neucom.2025.130360","DOIUrl":null,"url":null,"abstract":"<div><div>Neural architecture search (NAS) is an important approach for automatic neural architecture design and has been applied to many tasks, such as image classification and object detection. However, most of the conventional NAS algorithms mainly focus on reducing the prohibitive computational cost, while choosing commonly used reinforcement learning (RL), evolutionary algorithm (EA) or gradient-based methods as their search strategy. In this paper, we propose a novel search strategy for NAS, called Generative NAS (GNAS). Specifically, we assume that high-performing convolutional neural networks adhere to a latent distribution, and design a generator to learn this distribution for generating neural architectures. Furthermore, in order to update the generator for better learning the latent distribution, we use the policy gradient and the performance of the generated CNNs on the validation datasets as a reward signal. To evaluate GNAS, we have conducted extensive experiments on the CIFAR-10, SVHN, MNIST, Fashion-MNIST and ImageNet datasets. The results demonstrate the effectiveness of GNAS compared to previous NAS strategies.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"642 ","pages":"Article 130360"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative neural architecture search\",\"authors\":\"Xiaotong Zhai ,&nbsp;Shu Li ,&nbsp;Guoqiang Zhong ,&nbsp;Tao Li ,&nbsp;Fuchang Zhang ,&nbsp;Rachid Hedjam\",\"doi\":\"10.1016/j.neucom.2025.130360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neural architecture search (NAS) is an important approach for automatic neural architecture design and has been applied to many tasks, such as image classification and object detection. However, most of the conventional NAS algorithms mainly focus on reducing the prohibitive computational cost, while choosing commonly used reinforcement learning (RL), evolutionary algorithm (EA) or gradient-based methods as their search strategy. In this paper, we propose a novel search strategy for NAS, called Generative NAS (GNAS). Specifically, we assume that high-performing convolutional neural networks adhere to a latent distribution, and design a generator to learn this distribution for generating neural architectures. Furthermore, in order to update the generator for better learning the latent distribution, we use the policy gradient and the performance of the generated CNNs on the validation datasets as a reward signal. To evaluate GNAS, we have conducted extensive experiments on the CIFAR-10, SVHN, MNIST, Fashion-MNIST and ImageNet datasets. The results demonstrate the effectiveness of GNAS compared to previous NAS strategies.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"642 \",\"pages\":\"Article 130360\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092523122501032X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122501032X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经结构搜索(NAS)是神经结构自动设计的一种重要方法,已应用于图像分类和目标检测等领域。然而,大多数传统的NAS算法主要着眼于降低过高的计算成本,而选择常用的强化学习(RL)、进化算法(EA)或基于梯度的方法作为其搜索策略。本文提出了一种新的NAS搜索策略,称为生成式NAS (GNAS)。具体来说,我们假设高性能卷积神经网络遵循潜在分布,并设计一个生成器来学习该分布以生成神经架构。此外,为了更新生成器以更好地学习潜在分布,我们使用策略梯度和生成的cnn在验证数据集上的性能作为奖励信号。为了评估GNAS,我们在CIFAR-10、SVHN、MNIST、Fashion-MNIST和ImageNet数据集上进行了广泛的实验。结果表明,与以前的NAS策略相比,GNAS是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative neural architecture search
Neural architecture search (NAS) is an important approach for automatic neural architecture design and has been applied to many tasks, such as image classification and object detection. However, most of the conventional NAS algorithms mainly focus on reducing the prohibitive computational cost, while choosing commonly used reinforcement learning (RL), evolutionary algorithm (EA) or gradient-based methods as their search strategy. In this paper, we propose a novel search strategy for NAS, called Generative NAS (GNAS). Specifically, we assume that high-performing convolutional neural networks adhere to a latent distribution, and design a generator to learn this distribution for generating neural architectures. Furthermore, in order to update the generator for better learning the latent distribution, we use the policy gradient and the performance of the generated CNNs on the validation datasets as a reward signal. To evaluate GNAS, we have conducted extensive experiments on the CIFAR-10, SVHN, MNIST, Fashion-MNIST and ImageNet datasets. The results demonstrate the effectiveness of GNAS compared to previous NAS strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信