通过体内共聚焦显微镜诊断神经性角膜疼痛的深度学习模型的开发和验证

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Neslihan Dilruba Koseoglu, Eric Chen, Rudraksh Tuwani, Benjamin Kompa, Stephanie M. Cox, M. Cuneyt Ozmen, Mina Massaro-Giordano, Andrew L. Beam, Pedram Hamrah
{"title":"通过体内共聚焦显微镜诊断神经性角膜疼痛的深度学习模型的开发和验证","authors":"Neslihan Dilruba Koseoglu, Eric Chen, Rudraksh Tuwani, Benjamin Kompa, Stephanie M. Cox, M. Cuneyt Ozmen, Mina Massaro-Giordano, Andrew L. Beam, Pedram Hamrah","doi":"10.1038/s41746-025-01577-3","DOIUrl":null,"url":null,"abstract":"<p>Neuropathic corneal pain (NCP) is an underdiagnosed ocular disorder caused by aberrant nociception and hypersensitivity of corneal nerves, often resulting in chronic pain and discomfort even in the absence of noxious stimuli. Recently, microneuromas (aberrant growth and swelling of the corneal nerve endings) detected using in vivo <i>confocal microscopy</i> (IVCM) have emerged as a promising biomarker for NCP. However, this process is time-intensive and error-prone, limiting its clinical use and availability. In this work, we present a new NCP screening system based on a deep learning model trained to detect microneuromas using a multisite dataset with a combined total of 103,168 IVCM images. Our model showed excellent discriminative ability detecting microneuromas (AuROC: 0.97) and the ability to generalize to data from a new institution (AuROC: 0.90). Additionally, our pipeline provides an uncertainty quantification mechanism that allows it to communicate when its predictions are reliable, further increasing its clinical relevance.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"25 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a deep learning model for diagnosing neuropathic corneal pain via in vivo confocal microscopy\",\"authors\":\"Neslihan Dilruba Koseoglu, Eric Chen, Rudraksh Tuwani, Benjamin Kompa, Stephanie M. Cox, M. Cuneyt Ozmen, Mina Massaro-Giordano, Andrew L. Beam, Pedram Hamrah\",\"doi\":\"10.1038/s41746-025-01577-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuropathic corneal pain (NCP) is an underdiagnosed ocular disorder caused by aberrant nociception and hypersensitivity of corneal nerves, often resulting in chronic pain and discomfort even in the absence of noxious stimuli. Recently, microneuromas (aberrant growth and swelling of the corneal nerve endings) detected using in vivo <i>confocal microscopy</i> (IVCM) have emerged as a promising biomarker for NCP. However, this process is time-intensive and error-prone, limiting its clinical use and availability. In this work, we present a new NCP screening system based on a deep learning model trained to detect microneuromas using a multisite dataset with a combined total of 103,168 IVCM images. Our model showed excellent discriminative ability detecting microneuromas (AuROC: 0.97) and the ability to generalize to data from a new institution (AuROC: 0.90). Additionally, our pipeline provides an uncertainty quantification mechanism that allows it to communicate when its predictions are reliable, further increasing its clinical relevance.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01577-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01577-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

神经性角膜疼痛(NCP)是一种未被诊断的眼部疾病,由角膜神经的异常伤害感觉和超敏反应引起,即使在没有有害刺激的情况下也经常导致慢性疼痛和不适。最近,使用体内共聚焦显微镜(IVCM)检测到的微神经瘤(角膜神经末梢的异常生长和肿胀)已成为NCP的一个有希望的生物标志物。然而,这一过程耗时且容易出错,限制了其临床应用和可用性。在这项工作中,我们提出了一种新的NCP筛选系统,该系统基于深度学习模型,使用包含103,168张IVCM图像的多站点数据集来检测微瘤。我们的模型在检测微瘤方面表现出出色的鉴别能力(AuROC: 0.97)和对新机构数据的泛化能力(AuROC: 0.90)。此外,我们的管道提供了一种不确定性量化机制,允许它在预测可靠时进行沟通,进一步提高其临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and validation of a deep learning model for diagnosing neuropathic corneal pain via in vivo confocal microscopy

Development and validation of a deep learning model for diagnosing neuropathic corneal pain via in vivo confocal microscopy

Neuropathic corneal pain (NCP) is an underdiagnosed ocular disorder caused by aberrant nociception and hypersensitivity of corneal nerves, often resulting in chronic pain and discomfort even in the absence of noxious stimuli. Recently, microneuromas (aberrant growth and swelling of the corneal nerve endings) detected using in vivo confocal microscopy (IVCM) have emerged as a promising biomarker for NCP. However, this process is time-intensive and error-prone, limiting its clinical use and availability. In this work, we present a new NCP screening system based on a deep learning model trained to detect microneuromas using a multisite dataset with a combined total of 103,168 IVCM images. Our model showed excellent discriminative ability detecting microneuromas (AuROC: 0.97) and the ability to generalize to data from a new institution (AuROC: 0.90). Additionally, our pipeline provides an uncertainty quantification mechanism that allows it to communicate when its predictions are reliable, further increasing its clinical relevance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信