随机拉丁矩形中的子平方

IF 1 2区 数学 Q1 MATHEMATICS
Jack Allsop, Ian M. Wanless
{"title":"随机拉丁矩形中的子平方","authors":"Jack Allsop, Ian M. Wanless","doi":"10.1007/s00493-025-00156-0","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <i>k</i> is a function of <i>n</i> and . We show that with probability <span>\\(1-O(1/n)\\)</span>, a uniformly random <span>\\(k\\times n\\)</span> Latin rectangle contains no proper Latin subsquare of order 4 or more, proving a conjecture of Divoux, Kelly, Kennedy and Sidhu. We also show that the expected number of subsquares of order 3 is bounded and find that the expected number of subsquares of order 2 is <span>\\(\\left( {\\begin{array}{c}k\\\\ 2\\end{array}}\\right) (1/2+o(1))\\)</span> for all <span>\\(k\\leqslant n\\)</span>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"462 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsquares in Random Latin Rectangles\",\"authors\":\"Jack Allsop, Ian M. Wanless\",\"doi\":\"10.1007/s00493-025-00156-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <i>k</i> is a function of <i>n</i> and . We show that with probability <span>\\\\(1-O(1/n)\\\\)</span>, a uniformly random <span>\\\\(k\\\\times n\\\\)</span> Latin rectangle contains no proper Latin subsquare of order 4 or more, proving a conjecture of Divoux, Kelly, Kennedy and Sidhu. We also show that the expected number of subsquares of order 3 is bounded and find that the expected number of subsquares of order 2 is <span>\\\\(\\\\left( {\\\\begin{array}{c}k\\\\\\\\ 2\\\\end{array}}\\\\right) (1/2+o(1))\\\\)</span> for all <span>\\\\(k\\\\leqslant n\\\\)</span>.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"462 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00156-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00156-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设k是n和的函数。我们以\(1-O(1/n)\)的概率证明了均匀随机\(k\times n\)拉丁矩形不包含4阶或4阶以上的适当拉丁子方,证明了Divoux, Kelly, Kennedy和Sidhu的一个猜想。我们还证明了3阶子平方的期望数目是有界的,并且发现对于所有\(k\leqslant n\), 2阶子平方的期望数目是\(\left( {\begin{array}{c}k\\ 2\end{array}}\right) (1/2+o(1))\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subsquares in Random Latin Rectangles

Suppose that k is a function of n and . We show that with probability \(1-O(1/n)\), a uniformly random \(k\times n\) Latin rectangle contains no proper Latin subsquare of order 4 or more, proving a conjecture of Divoux, Kelly, Kennedy and Sidhu. We also show that the expected number of subsquares of order 3 is bounded and find that the expected number of subsquares of order 2 is \(\left( {\begin{array}{c}k\\ 2\end{array}}\right) (1/2+o(1))\) for all \(k\leqslant n\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信