铜催化乙烯烯的不对称羰基化水解烯丙基化反应

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sufang Shao, Yuan Yang, Alban Schmoll, Xiao-Feng Wu
{"title":"铜催化乙烯烯的不对称羰基化水解烯丙基化反应","authors":"Sufang Shao, Yuan Yang, Alban Schmoll, Xiao-Feng Wu","doi":"10.1039/d5sc02421h","DOIUrl":null,"url":null,"abstract":"We describe a novel and efficient copper-catalyzed carbonylative hydroallylation of vinylarenes, providing a direct route to chiral α,β-unsaturated ketones, which are important compounds in organic synthesis and bioactive molecules. The method employs readily accessible vinylarenes and allylic phosphates, utilizing carbon monoxide as the carbonyl source under mild reaction conditions. The reaction demonstrates a broad substrate scope, including diverse vinylarenes with various functional groups, as well as vinylarenes derived from natural products. Additionally, all four stereoisomers of a chiral allylic alcohol were prepared by employing this strategy, showcasing its versatility in stereodivergent synthesis.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"52 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-Catalyzed Asymmetric Carbonylative Hydroallylation of Vinylarenes\",\"authors\":\"Sufang Shao, Yuan Yang, Alban Schmoll, Xiao-Feng Wu\",\"doi\":\"10.1039/d5sc02421h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel and efficient copper-catalyzed carbonylative hydroallylation of vinylarenes, providing a direct route to chiral α,β-unsaturated ketones, which are important compounds in organic synthesis and bioactive molecules. The method employs readily accessible vinylarenes and allylic phosphates, utilizing carbon monoxide as the carbonyl source under mild reaction conditions. The reaction demonstrates a broad substrate scope, including diverse vinylarenes with various functional groups, as well as vinylarenes derived from natural products. Additionally, all four stereoisomers of a chiral allylic alcohol were prepared by employing this strategy, showcasing its versatility in stereodivergent synthesis.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc02421h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc02421h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种新的和高效的铜催化乙烯烯羰基化氢烯化反应,为手性α,β-不饱和酮提供了一条直接途径,这是有机合成和生物活性分子中的重要化合物。该方法采用易于获得的乙烯烯和烯丙基磷酸盐,在温和的反应条件下利用一氧化碳作为羰基源。该反应显示出广泛的底物范围,包括具有各种官能团的各种乙烯烯,以及源自天然产物的乙烯烯。此外,采用这种方法制备了手性烯丙醇的所有四种立体异构体,显示了其在立体发散合成中的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copper-Catalyzed Asymmetric Carbonylative Hydroallylation of Vinylarenes
We describe a novel and efficient copper-catalyzed carbonylative hydroallylation of vinylarenes, providing a direct route to chiral α,β-unsaturated ketones, which are important compounds in organic synthesis and bioactive molecules. The method employs readily accessible vinylarenes and allylic phosphates, utilizing carbon monoxide as the carbonyl source under mild reaction conditions. The reaction demonstrates a broad substrate scope, including diverse vinylarenes with various functional groups, as well as vinylarenes derived from natural products. Additionally, all four stereoisomers of a chiral allylic alcohol were prepared by employing this strategy, showcasing its versatility in stereodivergent synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信