重访原始引力波存在下的范·西特-泽尼克相关性

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
F. Shojaei Arani, M. Bagheri Harouni, Brahim Lamine and Alain Blanchard
{"title":"重访原始引力波存在下的范·西特-泽尼克相关性","authors":"F. Shojaei Arani, M. Bagheri Harouni, Brahim Lamine and Alain Blanchard","doi":"10.1088/1475-7516/2025/05/032","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a quantum field theory framework to describe the interaction between a gravitational wave (GW) background and an electromagnetic (EM) field emitted from a distant celestial source, such as a star. We demonstrate that a background of primordial gravitational waves (PGWs), as predicted by the inflationary scenario, induces a loss of spatial coherence in the EM field as it propagates over cosmological distances. This effect leads to the degradation of van Cittert-Zernike correlations, ultimately rendering them unobservable — a phenomenon referred to as blurring. Since spatial coherence is observed in very long baseline interferometry (VLBI) measurements of distant quasars, this places constraints on the amplitude of the PGW background. We quantitatively evaluate the blurring effect caused by PGWs in a two-mode squeezed state, which represents the standard quantum state predicted by the simplest inflationary models. However, due to the weak coupling between GWs and the EM field, we find that the induced incoherence is too small to be detected in current VLBI observations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"114 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting van Citter-Zernike correlations in the presence of primordial gravitational waves\",\"authors\":\"F. Shojaei Arani, M. Bagheri Harouni, Brahim Lamine and Alain Blanchard\",\"doi\":\"10.1088/1475-7516/2025/05/032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a quantum field theory framework to describe the interaction between a gravitational wave (GW) background and an electromagnetic (EM) field emitted from a distant celestial source, such as a star. We demonstrate that a background of primordial gravitational waves (PGWs), as predicted by the inflationary scenario, induces a loss of spatial coherence in the EM field as it propagates over cosmological distances. This effect leads to the degradation of van Cittert-Zernike correlations, ultimately rendering them unobservable — a phenomenon referred to as blurring. Since spatial coherence is observed in very long baseline interferometry (VLBI) measurements of distant quasars, this places constraints on the amplitude of the PGW background. We quantitatively evaluate the blurring effect caused by PGWs in a two-mode squeezed state, which represents the standard quantum state predicted by the simplest inflationary models. However, due to the weak coupling between GWs and the EM field, we find that the induced incoherence is too small to be detected in current VLBI observations.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/05/032\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/032","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一个量子场论框架来描述引力波(GW)背景和遥远天体(如恒星)发射的电磁(EM)场之间的相互作用。我们证明了原始引力波(PGWs)的背景,正如暴胀情景所预测的那样,当它在宇宙距离上传播时,会导致电磁场的空间相干性丧失。这种效应导致范西特-泽尼克相关性的降低,最终使它们无法观察到——这种现象被称为模糊。由于空间相干性是在遥远类星体的甚长基线干涉测量(VLBI)中观测到的,这就限制了PGW背景的振幅。我们定量地评估了PGWs在双模压缩状态下引起的模糊效应,这代表了最简单的暴胀模型预测的标准量子态。然而,由于GWs与电磁场之间的弱耦合,我们发现在当前的VLBI观测中,诱导的非相干性太小而无法检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting van Citter-Zernike correlations in the presence of primordial gravitational waves
In this paper, we develop a quantum field theory framework to describe the interaction between a gravitational wave (GW) background and an electromagnetic (EM) field emitted from a distant celestial source, such as a star. We demonstrate that a background of primordial gravitational waves (PGWs), as predicted by the inflationary scenario, induces a loss of spatial coherence in the EM field as it propagates over cosmological distances. This effect leads to the degradation of van Cittert-Zernike correlations, ultimately rendering them unobservable — a phenomenon referred to as blurring. Since spatial coherence is observed in very long baseline interferometry (VLBI) measurements of distant quasars, this places constraints on the amplitude of the PGW background. We quantitatively evaluate the blurring effect caused by PGWs in a two-mode squeezed state, which represents the standard quantum state predicted by the simplest inflationary models. However, due to the weak coupling between GWs and the EM field, we find that the induced incoherence is too small to be detected in current VLBI observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信