{"title":"双曲流形的熵与稳定性","authors":"Antoine Song","doi":"10.1007/s00039-025-00711-3","DOIUrl":null,"url":null,"abstract":"<p>Let (<i>M</i>,<i>g</i><sub>0</sub>) be a closed oriented hyperbolic manifold of dimension at least 3. By the volume entropy inequality of G. Besson, G. Courtois and S. Gallot, for any Riemannian metric <i>g</i> on <i>M</i> with same volume as <i>g</i><sub>0</sub>, its volume entropy <i>h</i>(<i>g</i>) satisfies <i>h</i>(<i>g</i>)≥<i>n</i>−1 with equality only when <i>g</i> is isometric to <i>g</i><sub>0</sub>. We show that the hyperbolic metric <i>g</i><sub>0</sub> is stable in the following sense: if <i>g</i><sub><i>i</i></sub> is a sequence of Riemaniann metrics on <i>M</i> of same volume as <i>g</i><sub>0</sub> and if <i>h</i>(<i>g</i><sub><i>i</i></sub>) converges to <i>n</i>−1, then there are smooth subsets <i>Z</i><sub><i>i</i></sub>⊂<i>M</i> such that both <span>\\(\\operatorname{Vol}(Z_{i},g_{i})\\)</span> and <span>\\(\\operatorname{Area}(\\partial Z_{i},g_{i})\\)</span> tend to 0, and (<i>M</i>∖<i>Z</i><sub><i>i</i></sub>,<i>g</i><sub><i>i</i></sub>) converges to (<i>M</i>,<i>g</i><sub>0</sub>) in the measured Gromov-Hausdorff topology. The proof relies on showing that any spherical Plateau solution for <i>M</i> is intrinsically isomorphic to <span>\\((M,\\frac{(n-1)^{2}}{4n} g_{0})\\)</span>.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Stability of Hyperbolic Manifolds\",\"authors\":\"Antoine Song\",\"doi\":\"10.1007/s00039-025-00711-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let (<i>M</i>,<i>g</i><sub>0</sub>) be a closed oriented hyperbolic manifold of dimension at least 3. By the volume entropy inequality of G. Besson, G. Courtois and S. Gallot, for any Riemannian metric <i>g</i> on <i>M</i> with same volume as <i>g</i><sub>0</sub>, its volume entropy <i>h</i>(<i>g</i>) satisfies <i>h</i>(<i>g</i>)≥<i>n</i>−1 with equality only when <i>g</i> is isometric to <i>g</i><sub>0</sub>. We show that the hyperbolic metric <i>g</i><sub>0</sub> is stable in the following sense: if <i>g</i><sub><i>i</i></sub> is a sequence of Riemaniann metrics on <i>M</i> of same volume as <i>g</i><sub>0</sub> and if <i>h</i>(<i>g</i><sub><i>i</i></sub>) converges to <i>n</i>−1, then there are smooth subsets <i>Z</i><sub><i>i</i></sub>⊂<i>M</i> such that both <span>\\\\(\\\\operatorname{Vol}(Z_{i},g_{i})\\\\)</span> and <span>\\\\(\\\\operatorname{Area}(\\\\partial Z_{i},g_{i})\\\\)</span> tend to 0, and (<i>M</i>∖<i>Z</i><sub><i>i</i></sub>,<i>g</i><sub><i>i</i></sub>) converges to (<i>M</i>,<i>g</i><sub>0</sub>) in the measured Gromov-Hausdorff topology. The proof relies on showing that any spherical Plateau solution for <i>M</i> is intrinsically isomorphic to <span>\\\\((M,\\\\frac{(n-1)^{2}}{4n} g_{0})\\\\)</span>.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00711-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00711-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设(M,g0)是一个至少维数为3的封闭定向双曲流形。由g . Besson, g . Courtois和S. Gallot的体积熵不等式可知,对于M上体积与g0相等的黎曼度规g,其体积熵h(g)仅在g与g0等距时满足h(g)≥n−1且相等。我们证明了双曲度规g0在以下意义上是稳定的:如果gi是与g0体积相同的M上的黎曼度量序列,并且如果h(gi)收敛于n−1,则存在光滑子集Zi∧M,使得\(\operatorname{Vol}(Z_{i},g_{i})\)和\(\operatorname{Area}(\partial Z_{i},g_{i})\)都趋于0,并且(M∈Zi,gi)在测量的Gromov-Hausdorff拓扑中收敛于(M,g0)。证明依赖于证明M的任何球面平台解本质上同构于\((M,\frac{(n-1)^{2}}{4n} g_{0})\)。
Let (M,g0) be a closed oriented hyperbolic manifold of dimension at least 3. By the volume entropy inequality of G. Besson, G. Courtois and S. Gallot, for any Riemannian metric g on M with same volume as g0, its volume entropy h(g) satisfies h(g)≥n−1 with equality only when g is isometric to g0. We show that the hyperbolic metric g0 is stable in the following sense: if gi is a sequence of Riemaniann metrics on M of same volume as g0 and if h(gi) converges to n−1, then there are smooth subsets Zi⊂M such that both \(\operatorname{Vol}(Z_{i},g_{i})\) and \(\operatorname{Area}(\partial Z_{i},g_{i})\) tend to 0, and (M∖Zi,gi) converges to (M,g0) in the measured Gromov-Hausdorff topology. The proof relies on showing that any spherical Plateau solution for M is intrinsically isomorphic to \((M,\frac{(n-1)^{2}}{4n} g_{0})\).
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.