{"title":"建立灌注式生物反应器中病毒污染模型,建立集成连续生物处理的合理控制策略。","authors":"Takao Ito,Takashi Nihei,Koichi Yamamoto,Naoto Watanabe,Yoshiyuki Tokieda,Yumiko Masuda,Masaki Okada","doi":"10.1002/bit.29021","DOIUrl":null,"url":null,"abstract":"A viral contamination model for steady-state perfusion cell culture was developed to assess how sampling frequency and volume impacted the expected downstream viral clearance factor in integrated continuous biomanufacturing processes. The model used population balance rate equations for cells and free virions, incorporating the virus infection cycle. It simulated the states of cell cultures for both endogenous viruses, which are potentially present within the cells and can be released from them, and adventitious viruses after contamination. The model also reproduced differences in virus concentration between bioreactors and harvests caused by sieving through the cell retention device. For virus risk assessments in integrated continuous biomanufacturing, the model evaluated the probability of detecting contamination based on the volume fraction of the sample tested and the downstream viral transmission by number of days after contamination. Considering the infection scenario with mouse minute virus (MVM) in 100 × 106 cells/mL cell culture for adventitious virus contamination, a notable decline in viable cell density was observed starting from Day 4. To ensure 99.999% safety of final products, the total downstream clearance achieving a log reduction value (LRV) > 15 LRV is required to remove the increased virus. If daily sampling is conducted and a downstream clearance is planned to satisfy the removal of potentially undetected MVM, a total clearance of 9 LRV is sufficient. This model enables us to simulate different scenarios for viral contamination and has the advantage of allowing assessments of virus safety strategies.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"145 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Model for Virus Contamination in Perfusion Bioreactors to Establish Rational Control Strategies for Integrated Continuous Bioprocessing.\",\"authors\":\"Takao Ito,Takashi Nihei,Koichi Yamamoto,Naoto Watanabe,Yoshiyuki Tokieda,Yumiko Masuda,Masaki Okada\",\"doi\":\"10.1002/bit.29021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A viral contamination model for steady-state perfusion cell culture was developed to assess how sampling frequency and volume impacted the expected downstream viral clearance factor in integrated continuous biomanufacturing processes. The model used population balance rate equations for cells and free virions, incorporating the virus infection cycle. It simulated the states of cell cultures for both endogenous viruses, which are potentially present within the cells and can be released from them, and adventitious viruses after contamination. The model also reproduced differences in virus concentration between bioreactors and harvests caused by sieving through the cell retention device. For virus risk assessments in integrated continuous biomanufacturing, the model evaluated the probability of detecting contamination based on the volume fraction of the sample tested and the downstream viral transmission by number of days after contamination. Considering the infection scenario with mouse minute virus (MVM) in 100 × 106 cells/mL cell culture for adventitious virus contamination, a notable decline in viable cell density was observed starting from Day 4. To ensure 99.999% safety of final products, the total downstream clearance achieving a log reduction value (LRV) > 15 LRV is required to remove the increased virus. If daily sampling is conducted and a downstream clearance is planned to satisfy the removal of potentially undetected MVM, a total clearance of 9 LRV is sufficient. This model enables us to simulate different scenarios for viral contamination and has the advantage of allowing assessments of virus safety strategies.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.29021\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.29021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Developing a Model for Virus Contamination in Perfusion Bioreactors to Establish Rational Control Strategies for Integrated Continuous Bioprocessing.
A viral contamination model for steady-state perfusion cell culture was developed to assess how sampling frequency and volume impacted the expected downstream viral clearance factor in integrated continuous biomanufacturing processes. The model used population balance rate equations for cells and free virions, incorporating the virus infection cycle. It simulated the states of cell cultures for both endogenous viruses, which are potentially present within the cells and can be released from them, and adventitious viruses after contamination. The model also reproduced differences in virus concentration between bioreactors and harvests caused by sieving through the cell retention device. For virus risk assessments in integrated continuous biomanufacturing, the model evaluated the probability of detecting contamination based on the volume fraction of the sample tested and the downstream viral transmission by number of days after contamination. Considering the infection scenario with mouse minute virus (MVM) in 100 × 106 cells/mL cell culture for adventitious virus contamination, a notable decline in viable cell density was observed starting from Day 4. To ensure 99.999% safety of final products, the total downstream clearance achieving a log reduction value (LRV) > 15 LRV is required to remove the increased virus. If daily sampling is conducted and a downstream clearance is planned to satisfy the removal of potentially undetected MVM, a total clearance of 9 LRV is sufficient. This model enables us to simulate different scenarios for viral contamination and has the advantage of allowing assessments of virus safety strategies.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.