Jing Xiao,Guorong Hu,Xiaozhou Zhou,Yuchuan Zheng,Jingyuan Li
{"title":"TIDGN:预测具有高构象动力学的内在无序蛋白相互作用的迁移学习框架。","authors":"Jing Xiao,Guorong Hu,Xiaozhou Zhou,Yuchuan Zheng,Jingyuan Li","doi":"10.1021/acs.jcim.5c00422","DOIUrl":null,"url":null,"abstract":"Interactions between intrinsically disordered proteins (IDPs) are crucial for biological processes, such as intracellular liquid-liquid phase separation (LLPS). Experiments (e.g., NMR) and simulations used to study IDP interactions encounter a variety of difficulties, highlighting the necessity to develop relevant machine learning methods. However, reliable machine learning methods face the challenge resulting from the scarcity of available training data. In this work, we propose a transfer learning-based invariant geometric dynamic graph model, named TIDGN, for predicting IDP interactions. The model consists of a pretraining task module and a downstream task module. The pretraining task module learns the dynamic structural encoding of IDP monomers, which is then used by the downstream task module for interaction site prediction. The IDP monomer structure data set and the IDP interaction event data set are constructed using all-atom molecular dynamics (MD) simulations. The transfer learning strategy effectively enhances the model's performance. Both homotypic interactions and heterotypic interactions between two IDPs are considered in this work. Interestingly, TIDGN performs well for the heterotypic interaction prediction. Additionally, the feature ablation analysis emphasizes the importance of invariant geometric graph features. Taken together, our work demonstrates that the integration of transfer learning and the invariant geometric graph network offers a promising approach for addressing data scarcity challenges of IDP interaction prediction.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"72 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TIDGN: A Transfer Learning Framework for Predicting Interactions of Intrinsically Disordered Proteins with High Conformational Dynamics.\",\"authors\":\"Jing Xiao,Guorong Hu,Xiaozhou Zhou,Yuchuan Zheng,Jingyuan Li\",\"doi\":\"10.1021/acs.jcim.5c00422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions between intrinsically disordered proteins (IDPs) are crucial for biological processes, such as intracellular liquid-liquid phase separation (LLPS). Experiments (e.g., NMR) and simulations used to study IDP interactions encounter a variety of difficulties, highlighting the necessity to develop relevant machine learning methods. However, reliable machine learning methods face the challenge resulting from the scarcity of available training data. In this work, we propose a transfer learning-based invariant geometric dynamic graph model, named TIDGN, for predicting IDP interactions. The model consists of a pretraining task module and a downstream task module. The pretraining task module learns the dynamic structural encoding of IDP monomers, which is then used by the downstream task module for interaction site prediction. The IDP monomer structure data set and the IDP interaction event data set are constructed using all-atom molecular dynamics (MD) simulations. The transfer learning strategy effectively enhances the model's performance. Both homotypic interactions and heterotypic interactions between two IDPs are considered in this work. Interestingly, TIDGN performs well for the heterotypic interaction prediction. Additionally, the feature ablation analysis emphasizes the importance of invariant geometric graph features. Taken together, our work demonstrates that the integration of transfer learning and the invariant geometric graph network offers a promising approach for addressing data scarcity challenges of IDP interaction prediction.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00422\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00422","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
TIDGN: A Transfer Learning Framework for Predicting Interactions of Intrinsically Disordered Proteins with High Conformational Dynamics.
Interactions between intrinsically disordered proteins (IDPs) are crucial for biological processes, such as intracellular liquid-liquid phase separation (LLPS). Experiments (e.g., NMR) and simulations used to study IDP interactions encounter a variety of difficulties, highlighting the necessity to develop relevant machine learning methods. However, reliable machine learning methods face the challenge resulting from the scarcity of available training data. In this work, we propose a transfer learning-based invariant geometric dynamic graph model, named TIDGN, for predicting IDP interactions. The model consists of a pretraining task module and a downstream task module. The pretraining task module learns the dynamic structural encoding of IDP monomers, which is then used by the downstream task module for interaction site prediction. The IDP monomer structure data set and the IDP interaction event data set are constructed using all-atom molecular dynamics (MD) simulations. The transfer learning strategy effectively enhances the model's performance. Both homotypic interactions and heterotypic interactions between two IDPs are considered in this work. Interestingly, TIDGN performs well for the heterotypic interaction prediction. Additionally, the feature ablation analysis emphasizes the importance of invariant geometric graph features. Taken together, our work demonstrates that the integration of transfer learning and the invariant geometric graph network offers a promising approach for addressing data scarcity challenges of IDP interaction prediction.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.