{"title":"线粒体特异性蛋氨酸亚砜还原酶活性的双通道磷光比率测定和磷光寿命成像。","authors":"Xuewei Wang,Chen Chen,Yang Tian,Qi-Wei Zhang","doi":"10.1021/jacs.5c03235","DOIUrl":null,"url":null,"abstract":"Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer's disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe's utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe's potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"150 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Channel Phosphorescence Ratiometry and Phosphorescence Lifetime Imaging of Mitochondria-Specific Methionine Sulfoxide Reductase Activity.\",\"authors\":\"Xuewei Wang,Chen Chen,Yang Tian,Qi-Wei Zhang\",\"doi\":\"10.1021/jacs.5c03235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer's disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe's utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe's potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c03235\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03235","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-Channel Phosphorescence Ratiometry and Phosphorescence Lifetime Imaging of Mitochondria-Specific Methionine Sulfoxide Reductase Activity.
Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer's disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe's utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe's potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.