{"title":"基于堆叠稀疏自编码器IDS的新型Pelican优化算法(POA)用于网络安全","authors":"R. Kanimozhi, A. Neela Madheswari","doi":"10.1002/ett.70113","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Security is a crucial factor for information systems and other vital infrastructures. Ensuring robust security measures is imperative due to the substantial volume of network traffic. On the other hand, many network components are susceptible to cyber threats and attacks due to their inherent properties. The increasing use of networks paves the way for widespread security vulnerabilities. In this context, the implementation of intrusion detection systems (IDS) plays a key role in safeguarding information systems and their network architectures. This research introduces an optimized deep learning model aimed at improving network security by accurately detecting intrusions. The proposed IDS, also termed as the POA-SSAE IDS model (pelican optimization model-stacked sparse autoencoder), integrates a POA for optimal feature selection and an SSAE for feature classification. The effectiveness of this IDS was tested using benchmark datasets, namely CICIDS2018 and KDDCUP'99. The results exhibited the proposed model's superior performance, achieving an accuracy of 97.45% on the CICIDS2018 dataset and 98.7% accuracy on the KDDCUP'99 dataset.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Pelican Optimization Algorithm (POA) With Stacked Sparse Autoencoder (SSAE) Based IDS for Network Security\",\"authors\":\"R. Kanimozhi, A. Neela Madheswari\",\"doi\":\"10.1002/ett.70113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Security is a crucial factor for information systems and other vital infrastructures. Ensuring robust security measures is imperative due to the substantial volume of network traffic. On the other hand, many network components are susceptible to cyber threats and attacks due to their inherent properties. The increasing use of networks paves the way for widespread security vulnerabilities. In this context, the implementation of intrusion detection systems (IDS) plays a key role in safeguarding information systems and their network architectures. This research introduces an optimized deep learning model aimed at improving network security by accurately detecting intrusions. The proposed IDS, also termed as the POA-SSAE IDS model (pelican optimization model-stacked sparse autoencoder), integrates a POA for optimal feature selection and an SSAE for feature classification. The effectiveness of this IDS was tested using benchmark datasets, namely CICIDS2018 and KDDCUP'99. The results exhibited the proposed model's superior performance, achieving an accuracy of 97.45% on the CICIDS2018 dataset and 98.7% accuracy on the KDDCUP'99 dataset.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70113\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70113","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Novel Pelican Optimization Algorithm (POA) With Stacked Sparse Autoencoder (SSAE) Based IDS for Network Security
Security is a crucial factor for information systems and other vital infrastructures. Ensuring robust security measures is imperative due to the substantial volume of network traffic. On the other hand, many network components are susceptible to cyber threats and attacks due to their inherent properties. The increasing use of networks paves the way for widespread security vulnerabilities. In this context, the implementation of intrusion detection systems (IDS) plays a key role in safeguarding information systems and their network architectures. This research introduces an optimized deep learning model aimed at improving network security by accurately detecting intrusions. The proposed IDS, also termed as the POA-SSAE IDS model (pelican optimization model-stacked sparse autoencoder), integrates a POA for optimal feature selection and an SSAE for feature classification. The effectiveness of this IDS was tested using benchmark datasets, namely CICIDS2018 and KDDCUP'99. The results exhibited the proposed model's superior performance, achieving an accuracy of 97.45% on the CICIDS2018 dataset and 98.7% accuracy on the KDDCUP'99 dataset.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications